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Chapter 1

Introduction

Synchronizing clocks in the presence of faults is a classic problem in dis-
tributed computing. Even the most accurate clocks do drift at significant
rates, both with respect to a time standard and relative to each other. In
order for independent processors to exhibit cooperative behavior, it is often
required that their local clocks be synchronized. Such synchrony is the ba-
sis for distributed algorithms that use timeouts, time stamps, and rounds
of message passing. Synchronization is also assumed when the same com-
putation is executed on multiple, independent processors in order to mask
processor failures. Digital avionics systems constitute a typical example of
the need for synchronized clocks. In these systems, the results of multiple re-
dundant processors are voted to ensure a high degree of fault tolerance, and
the processor clocks must be synchronized in order to carry this out. Clock
synchronization problems led to the scrubbing of the first scheduled launch
of the NASA Space Shuttle [4), and to anomalous behavior of the Voyager
spacecraft [5]. Butler [6] presents a survey of various clock synchronization
protocols.

Synchronizing clocks in the presence of faults is a difficult problem. If
synchrony is maintained by periodically broadcasting a global clock value to
each of the processors, the failure of the global clock then becomes critical.
On the other hand, if each processor has its own local clock and these clocks
are initially synchronized, they might slowly drift apart so that with time
the system loses its ability to behave synchronously. It is therefore neces-
sary to periodically resynchronize the clocks. We are concerned here with
algorithms that perform this resynchronization in a fault tolerant manner.
In the cases we consider, the clocks are required to be synchronized only



with respect to each other and not with respect to some external standard
clock. The primary requirement that any solution must satisfy is that at
any instant, the absolute difference, or the skew, between two clock readings
should be within some bound §. The secondary requirement is that there
must be a small bound on the correction required to keep clocks in syn-
chrony. The latter requirement prevents trivial solutions that, for example,
reset the clocks to zero at each round of synchronization. We restrict our
focus to the primary requirement, since the secondary requirement turns
out to be a straightforward consequence of one of the assumptions for the
operation of the protocol studied here.

To implement synchronized clocks, each processor has a physical clock
whose drift rate with respect to a fixed standard time is bounded. We refer
to the fixed standard time as real time. In addition to the physical clock,
each processor maintains a logical, or virtual, clock that is computed by
periodically applying an adjustment to the reading of the physical clock.
The adjustment to be applied at the end of each period is determined by
means of a synchronization protocol. The application of such an adjustment
could be continuous so that the individual clock ticks are either sped up or
slowed down, but no clock ticks are dropped or repeated. Alternately, the
adjustment could be applied in an instantaneous manner, in which case,
some clock ticks might be dropped or repeated. In the latter situation,
critical events should not be scheduled during these clock ticks. This report
only considers the case of instantaneous clock adjustments. These results are
therefore applicable to the class of systems that have a synchronization phase
followed by a period of normal operation in each cycle of synchronization.
The results here can be extended to the case of continuous clock adjustments.
Schneider [1] presents an analysis of continuous adjustments.

To take a somewhat coarse look at clock synchronization, suppose that
the various physical clocks start synchronized and drift apart from real time
at a rate not exceeding p. For example, a clock might gain or lose up to a
minute every hour. The processors operate normally for a period R of, say,
an hour. The processors then engage in a round of synchronization during
which they exchange clock values. Assume for simplicity that the communi-
cation between clocks occurs instantaneously. At some mutually agreeable
instant, the processors reset their clocks to some mutually agreeable value
such as the average of their clock readings. Thus at the end of such a round
of synchronization, the skew between clocks vanishes. Clearly, if we want
the clocks to be no more than é apart, the period R between synchroniza-
tions should not exceed 6/2p. Given that p is a minute per hour, and R is



an hour, 6 can be no less than two minutes.

The above outline obviously makes a great many simplifying assump-
tions, but it does capture the basic process of clock synchronization. The
most significant invalid assumption is that clocks and processors do not fail.
Clock synchronization protocols ought to be able to tolerate a certain num-
ber of processor failures since they are often used to synchronize multiple
processors in fault-tolerant architectures. When processors do fail, they
could do so in the worst possible way by exhibiting arbitrarily different be-
haviors towards different processors, e.g., by “maliciously” communicating
different clock values to different processors. Such failures are known as
Byzantine failures [7]. Consider the case of three clocks a, b, and ¢, when a
reads 12 noon, b reads 11:59 am, and ¢ has failed. To resynchronize, they
exchange clock values and ¢ maliciously communicates its value as 12:01 pm
to ¢ and as 11:58 am to b. Suppose each clock is resynchronized by taking
the average of all the clock values observed by it, then a resets itself to
12 noon and b resets itself to 11:59 am. The clocks are thus no closer follow-
ing resynchronization than immediately prior to resynchronization. Thus
the clocks can continue to drift even further apart until the next round of
synchronization.

The above scenario illustrates one of the earliest clock synchronization
protocols capable of tolerating Byzantine processor failures: the Interac-
tive Convergence Algorithm (ICA) of Lamport and Melliar-Smith (3]. ICA
tolerates up to |(N — 1)/3] failures for N processors. In ICA, a proces-
sor p resynchronizes for the :’th time when its clock reads iR. Processor
p then reads the difference between the other clock readings and its own
clock reading. By ignoring clock differences larger than a certain value A,
Processor p computes the egocentric mean of the acceptable clock differ-
ences as the correction required to resynchronize its clock. Rushby and von
Henke [8] have subjected Lamport and Melliar-Smith’s proof of correctness
to mechanical scrutiny using EEDM. As is often the case with fault-tolerant
distributed protocols, the original proof is both subtle and complex. The
mechanical verification was able to identify and correct several minor flaws,
and to significantly streamline the proof.

Schneider [1] presents a clock synchronization scheme that generalizes
protocols such as ICA. Schneider’s clock synchronization scheme (abbrevi-
ated here as SCS) regards each logical clock as being periodically reset to a
value computed by a convergence function. The egocentric mean of ICA is
an instance of such a convergence function. Schneider places certain natu-
ral conditions on the behavior of suitable convergence functions and shows



that these conditions are sufficient for bounding the skew between the re-
sulting logical clocks. He also shows that the convergence functions used by
a number of existing protocols satisfy these restrictions. Such a schematic
presentation of Byzantine clock synchronization provides an elegant frame-
work for understanding various individual protocols, and greatly simplifies
the proofs of their correctness.

Since the SCS protocol captures the mathematics behind Byzantine clock
synchronization in an abstract and schematic manner, it makes an interest-
ing candidate for verification. The schematic nature of the SCS protocol
makes it convenient to subsequently verify a number of specific protocols as
instances of the SCS protocol. Also, Schneider’s analysis employs a global
“real time” rather than clock time as its frame of reference, i.e., clocks map
real time to clock time. Lamport and Melliar-Smith’s analysis [3] of ICA
and the verification by Rushby and von Henke [8] were both carried out
in terms of clocks that mapped clock time to real time. The use of clock
time as a frame of reference makes some of the mathematics is fairly cum-
bersome and also makes the specification harder to understand. It seems
reasonable to assume that to each real time instant, there is a unique clock
reading, but not quite as reasonable to insist that there is a unique real time
instant corresponding to a clock reading since a failed clock could exhibit
the same reading at different real time instants. It is, of course, possible to
explain away such objections. The question of what is the best framework
for specifying such protocols is, to our knowledge, still open.

The mechanical verification of the SCS protocol was carried out using the
EnbpM verification system developed at the Computer Science Laboratory of
SRI International. The egocentric mean function of the ICA protocol was
also verified as satisfying Schneider’s restrictions. The SCS protocol and its
informal proof are presented in Chapter 9. An overview of the mechani-
cally checked proof is presented in Chapter 3. The appendices contain the
complete listing of the proof that was presented as input to EHDM.

The use of EEDM to check the proof led to the clarification of a number
of details from Schneider’s original presentation without tampering unduly
with the outline and intent of his argument. Schneider’s proof employs
a monotonicity condition on convergence functions that was found to be
inessential for the proof. The monotonicity condition actually fails for ICA
and other similar convergence functions (see Section 2.4). Schneider’s proof
requires certain relations to hold between the convergence behavior of the
convergence function, the drift rate of the physical clocks, the error in com-
municating clock values, and the time between synchronization rounds. The
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machine proof clears up some minor inaccuracies in Schneider’s derivation
of these relations.

Acknowledgements.  John Rushby supplied much of the background
and guidance for this work. Friedrich von Henke helped me get started
with EHDM. I am also grateful to Fred Schneider and Rick Butler for their
encouragement.



Chapter 2

Schneider’s Schema for
Clock Synchronization

Schneider shows that a number of known algorithms for synchronizing
Byzantine clocks can be presented in a uniform manner so that their individ-
ual proofs are greatly simplified [1]. The exposition below follows Schneider’s
outline quite closely, but revises a number of the details in the description of
the protocol as well as the proof. Section 2.1 describes how the logical clock
is computed from the physical clock using the convergence function. Sec-
tion 2.2 describes the conditions on the behavior of clocks and on suitable
convergence functions. The proof of correctness of clock synchronization
from the conditions of Section 2.2 is outlined in Section 2.3.

2.1 Defining Clocks

The physical and logical clocks are presented as functions from real time
(as given by some external standard) to clock readings. This real time thus
forms the frame of reference and is often referred to simply as “time.”! The
variable t ranges over this real time. Synchronization takes place in rounds.
The time at which processor p adjusts its clock following the 2’th round of
synchronization is represented by t;. The starting time tg which is the time
from which the system is observed, is taken to be zero.

In our abstraction, both the real time and the clock readings can be
interpreted as ranging over the real numbers or the rationals. The ordered

In the original presentation of the interactive convergence algorithm, clocks are rep-
resented as functions from clock time to the external standard time {3, 8}.



field axioms that are used are satisfied by both the real numbers and the
rationals. The term PC,(t) is the reading of p’s physical clock at real time
t. The adjusted virtual clock reading at time t:, is computed by applying an
adjustment adj;; to the physical clock reading PCp(t;,). In its ¢’th interval
of operation, i.e., when t; <t< t;;“, the virtual clock reading, VCy(t) is
given by PC,(t) + adj;,. At round 0, the adjustment adjg is taken to be 0
so that for ¢ < ¢, the reading VCy(t) is just PC,p(t). In other words, in
the first period of operation, each clock takes its physical clock reading as
its virtual clock reading. This means that for synchronization over the first
period, we need as a condition, a bound on the initia] skews between the
physical clocks of nonfaulty processors.

For i > 0, we let O;, be an array of clock readings so that (-);,(q) is
p’s reading of ¢’s clock at time t;,. In the EHDM formalization, the array of
observed clock readings 0}, is actually represented as a function from clocks
to readings. The corrected value of VCy(t,) is computed by a convergence
function, cfn(p, O;). The adjustment adj; to be applied to the physilcal
clock is therefore given by the difference cfn(p,©,) — PCy(t;). Since 0, is
a function, cfn is a higher-order function.

The above explanation of @;(q) does not specify whether ¢’s physical or
virtual clock is the one that is read by clock p. Note that if ty preceded t3,
then g¢’s virtual clock has already been adjusted for the i’th time at time
t;,. In Schneider’s model, O;(q) is a reading of ¢’s virtual clock at time t;,
but ignoring the i’th correction that may have already been applied to ¢’s
clock. This value is represented by an abstraction called the interval clock.
The interval clock reading IC;(t) is given by PC (1) + adj;. Thus for z > 0,
the value ©}(q) is p’s reading of IC’;‘l(t;). The rationale for introducing
an interval clock is that the observed clock readings in the protocol are
based on readings exchanged prior to synchronization. The interval clock
is an abstraction that is useful for describing the protocol and it need not
actually be implemented. The physical and virtual clocks are of course both
implemented.

The above description leads to following definitions where i ranges over
the natural numbers and ¢t > 0.

adjg*! = cfn(p, Oit1) — PC,(£it1) (2.1.1)

adi} = 0 (2.1.2)
ICy(t) = PCy(t) + adj (2.1.3)
VGy(t) = ICy1), for ¢, <t < it (2.1.4)

7



It is easy to derive the following from Definitions (2.1.1), (2.1.3),
and (2.1.4).

VC () = Ic;“(t;',“):cfn(p,@;',“) (2.1.5)
ICi\(t) = cfn(p,e;',+1)+Pcp(t)-Pc,,(t;“) (2.1.6)

So far we have merely defined the virtual and interval clock functions in
terms of the physical clock function PC,(t), the synchronization times t;',,
and the convergence function cfn applied to the clock readings ©,. In the
next section, we enumerate Schneider’s constraints on these quantities when
p is a nonfaulty, or correct, processor. The main result we obtain from these
constraints and the above definitions is a bound & on the skew between the
logical clocks of two correct processors p and gq.

Theorem 2.1.1 (bounded skew) For any two clocks p and g that are
nonfaulty at time t,

[VC,(t) = VCy(t)| £ 6 (2.1.7)

The proof of Theorem 2.1.1is outlined in Section 2.3.1.

2.2 Clock conditions

In formalizing the laws constraining the behavior of individual clocks, we
must ensure that no assumptions are made regarding the faulty clocks since
we are dealing with Byzantine failures. These laws which are conditions
on the behavior of clocks are enumerated as axioms within the boxes below.
Individual protocols and clock implementations are expected to satisfy these
conditions.

The conditions constraining the behaviour of clocks employ a number of
constants represented by lowercase Greek letters. All of these constants are
taken to be non-negative.

Section 2.1 above described how the processors go through rounds of
synchronization. The proof of Theorem 2.1.7 is by induction on the number
of rounds. The main idea of the proof is to show that the virtual clocks
are within 65 immediately following a round of synchronization, and the
skew between them does not exceed § in the following period until the next
round of synchronization. To start, the following condition asserts that the
nonfaulty clocks are synchronized to within the quantity ég at time 0.



Condition 1 (initial skew) For nonfaulty processors p and q

|PC,(0) - PC,(0)] < 65 (2.2.8)

The nonfaulty physical clocks must keep good enough time so that they
do not drift away from real time by a rate greater than p.

Condition 2 (bounded drift) There is a nonnegative constant p such
that if clock p is nonfaulty at time s, s > t, then

(1-p)(s = 1) < PCyls) = PCy(1) < (14 p)(s - 1) (2.2.9)

A useful corollary to bounded drift is that two physical clocks p and ¢ that
are not faulty at time s, for s > ¢, can drift further apart over the interval
s —t by 2p(s —t), since both p and ¢ can drift by p(s — t) with respect to
real time, but in opposite directions.

|PCy(s) = PCy(5)| < [PCy(t) = PCy(1)] + 2p(s — 1) (2.2.10)

Each protocol has some mechanism for triggering the resynchronization
of the clocks. Schneider postulates the existence of a global synchronization
signal, t&, which occurs at a period bounded from above and below. One
can usually interpret ti, as the real-time instant when the first nonfaulty
processor decides to resynchronize for the 2’th time. Schneider’s conditions
on t& are stated in terms of positive constants which we name lo, ki, and
wid. His first condition is that the period tg"l — té; is bounded from below
by lo, and from above by hi. The second condition bounds the delay in
receiving the trigger so that t;, - t}; < wid, for nonfaulty p.

Our description of the proof uses a slightly different set of parameters
in order to dispense with the notion of a global synchronization signal used
in Schneider’s formulation. The parameters below seem easier to identify

2In the description of the machine verification, great pains are taken to indicate the
times at which the clocks are required to be nonfaulty. The rest of the informal outline
of the proof makes the simplifying assumption that clocks are either faulty or nonfaulty,
and disregards the time at which clocks are asserted as being nonfaulty.



for the various instances of Schneider’s protocol. The different choice of
parameters do not affect the proof of correctness in any significant way. For
individual synchronization protocols, it should be possible to derive one set
of parameters from the other.

Condition 3 (bounded interval) For nonfaulty clock p
0 < Tonin < ! — 15 < Trmag (2.2.11)
Condition 4 (bounded delay) For nonfaulty clocks p and ¢
lt, —t,| < B (2.2.12)
Condition 5 (initial synchronization) For nonfaulty clock p

9=0 (2.2.13)

From the conditions of bounded interval and bounded delay above, it
follows that if 8 < Tmin, then t;, < t;‘“ for nonfaulty clocks p and g; i.e., there
is no overlap between the #’th and the (i + 1)’th rounds of synchronization.
Since we do want the synchronization rounds not to overlap, we state the
following as a condition. If the periods were allowed to overlap, then the
protocol would be difficult to implement since p could have started its (7 +
1)’th clock before another processor ¢ had started its 1’th clock.

Condition 6 (nonoverlap)

B £ Tmin (2.2.14)

Another corollary of the bounded interval and bounded delay conditions
is that for any two nonfaulty clocks p and g, we can derive,

0< ! — 18 < roas + 8. (2.2.15)
For nonfaulty clocks p and ¢, G:,*l(q) represents p’s observation of ¢’s

i'th clock reading at time £3*!, i.e., it is p's estimate of IC}(ti¥1). The error

10




in this reading is assumed to be bounded by A.

Condition 7 (reading error) For nonfaulty clocks p and q,

HC () - 0 (9l < A (2.2.16)

The above conditions turn out to be sufficient to bound the skew in
the period between successive rounds of synchronization in terms of the
skew bound 5 immediately following synchronization. The conditions below
of bounded faults, translation invariance, and precision enhancement, are
needed to derive the skew bound és. The condition of accuracy preservation
below is needed to bound the skew between virtual clocks when, for instance,
¢ has synchronized for the i’th time but p has not.

‘The parameter NV is the total number of processors, and F is the max-
imum number of faulty clocks that the algorithm is expected to tolerate.
This property of the system is captured by the following condition.

Condition 8 (bounded faults) At any time t, the number processors
faulty at time t is at most F.

The conditions below are mathematical constraints placed on the con-
vergence function, e.g., clocks, drifts, and failures, do not play any role in
the statements. The isolation of the constraints makes it possible to demon-
strate that the egocentric mean function of ICA satisfies the conditions of
translation invariance, precision enhancement, and accuracy preservation,
in purely mathematical terms. Note that these conditions do not make any
distinction between the faulty and the nonfaulty clocks but are instead given
in terms of a subset C of clocks satisfying certain mathematical constraints.

Suppose that t! > t‘ for nonfaulty p and ¢, then in order to compute
bs, we are interested in comparing the clock times for p and ¢ at t‘ the
time when clocks p and ¢ have both just been synchronized for the t’th
time. Processor ¢ starts its ¢’th interval clock at t‘ with value cfn(q, ©,),
so that its reading at t} is cfn(q,@,) + =, where z = PC (th) — PC (1 )
The condition of translatzon invariance indicates that adding z to the value

11



of the convergence function should be the same as adding z to each clock
reading instead. Recall that the array of clock readings is represented by a
function from clocks to readings so that cfn is a higher-order function.

Condition 9 (translation invariance) For any function @ mapping
clocks to clock values,

cfn(p, (An: 6(n) + z)) = cfn(p,0) + = (2.2.17)

As a consequence of translation invariance, we know that at t;, both p
and q have been resynchronized and VCy(t,) = cfn(g, (An: Og(n) + 7)) for
some z, and VC,o(tit!) = cfn(p, ©p). We clearly need some condition to
bound the difference between these two values of the convergence function
to within 5. The condition of precision enhancement allows exactly such a
comparison between values of the convergence function based on the range
of values of some subset of the clock readings that intuitively correspond to
the readings of nonfaulty clocks.

In the statement of precision enhancement, y and 6 are any two arrays
(or functions) of clock readings, and C is to be intuitively interpreted as
the subset of nonfaulty processors. This interpretation of C is permissible
by the bounded faults condition. The reason it is not directly taken to be
the set of nonfaulty clocks is because the protocol cannot assume that any
individual clock can distinguish the faulty from the nonfaulty clocks. The
convergence functions for some protocols can neglect readings of nonfaulty
clocks while considering readings of faulty clocks.

Precision enhancement is used to bound the skew between two clocks
immediately after both have been resynchronized whereas accuracy preserva-
tion is used to bound the skew between a clock that has been resynchronized
and one that has yet to be resynchronized in the ith round. The condition
of precision enhancement bounds the skew between two clocks as computed
by the convergence function, based on the skews between the clock readings
that are inputs to the convergence function. We will refer to the clocks in
C as C-clocks. Precision enhancement then asserts that if the readings of
different C-clocks in 7 fall within a range y as do the C -clock readings in
8, and the corresponding readings in ¥ and in 6 of any C-clock differ by no

12



more than z, then ¢fn(p,v) and cfn{q,8) are within n(z,y) of each other.*
The parameter y will roughly correspond to the amount by which the clocks
have drifted relative to each other and z roughly indicates the message de-
lay in communicating clock values. Typically, the parameter y dominates
z. The quantity m(z,y) provides the bound on the skew s immediately
following resynchronization. For the precision to be truly enhanced, it is
crucial for m(z,y) to be smaller than y.

Condition 10 (precision enhancement) Given any subset C of the N
clocks with |C| > N — F, and clocks p and q in C, then for any readings v
and 8 satisfying the conditions

1. foranylinC, |[y(I)-6(l)| < =z
2. foranyl, min C, |y(I)—vy(m)| <y
3. foranyl, minC, |6(1) - 6(m)| <y

there is a bound n(z,y), such that

lefn(p,7) — cfn(q,8)| < 7(z,y) (2.2.18)

The final condition of accuracy preservation bounds the distance between
the value of ¢fn(p, ) and the nonfaulty entries in 8. If tf; < t;, then accuracy
preservation® can be used to bound the difference between IC3H (ti+1) and
I1C ;,(t;"”l ).

*Note that the order of arguments to 7 are reversed from their order in Schneider’s
description [1].

*Footnote 7 in Schneider [1] explains the choice of the terms precision enhancement and
accuracy preservation. ‘Precision’ is defined as the closeness with which a measurement
can be reproduced, whereas ‘accuracy’ is the proximity of the measurement to the actual
value being measured. The virtual clocks represent various measurements of real time.
The condition of precision enhancement characterizes the closeness of these measurements
to each other. The condition of accuracy preservation can be seen as bounding the drift
rate of the virtual clock with respect to real time.

13



Condition 11 (accuracy preservation) Given any subset C' of the N
clocks with |C| > N — F, and clock readings 6 such that for any l and
m in C, the bound |6(1) — 8(m)| < = holds, there is a bound a(z) such that
forany q in C

\cfn(p, 8) — 8(a)| < a(2) (22.19)

In addition to the conditions enumerated above, Schneider presents a
condition called monotonicity that is actually not satisfied by several clock
synchronization protocols. Fortunately, this condition turns out to be un-
necessary in the derivation. The monotonicity condition asserts that if for
each processor I, 8(1) > ~(l), then ¢fn(p,8) > cfn(p,v). The failure of the
monotonicity condition for ICA is demonstrated in Section 2.4.

2.3 The Correctness Proof

The proof described below closely follows Schneider’s outline. A few of
the details are different, mainly reflecting corrections or perceived improve-
ments. These seemingly small revisions do, however, lead to drastic changes
in the statements of many of the theorems. The details of the correctness
proof are both conceptually and notationally complicated. The formal ar-
guments are extremely delicate to carry out carefully and correctly due to
the additional consideration of processor failure. The true difficulty of con-
structing watertight proofs may not be apparent in the descriptions below
since they only capture the end result of a mechanical verification and not
the tenuous intermediate steps. It would be extremely difficult for even
the most diligent mathematician to correctly capture all the details of such
proofs without machine assistance. One difficulty is the care that is needed
to ensure that no assumptions are made regarding failed clocks. Schnei-
der [1], for instance, asserts, “We make no assumptions about the behavior
of clocks at faulty processors — not even that they can be modeled by
functions.” The present formulation does not go as far as to avoid the use
of functions to model the behavior of failed clocks but no constraints are
placed on the values of these functions when a processor has failed. The use
of functions does not seem to contradict any intuitive understanding of the
physical behavior of failed clocks. The possibility of processor failure adds
significantly to the complexity of the formalization as well as the proof.

14



The proof described in this section is itself a somewhat simplified ren-
dering of the mechanically verified proof. The main difference is that in the
mechanical proof, the faultiness of a processor is itself a time-varying prop-
erty, i.e., processors can fail at any time. A brief overview is given below to
provide an outline of the detailed proof. The words processor and clock are
used interchangeably.

2.3.1 Overview

To establish the main result, Theorem 2.1.1, we must show that the skew,
or absolute difference, between the readings of any two nonfaulty clocks p
and ¢ at time ¢, given by |VCy(t) — VC,y(t)|, is bounded by a quantity 6.
By the definition of V'C in (2.1.4), this reduces to the following two cases:

1. When both clocks have been resynch;onized for the i’th time but not
for the (i 4+ 1)’th time, i.e., if maz(t,#)) < t < min(t;t!, #:¥1), then
the skew between IC;;(t) and IC;(t) is bounded by 4, and

2. When only one clock, say g, has been resynchronized for the (i +
1)’th time, ie., if £f*! <t < t:*1, then the skew between IC(t) and
ICi*(t) is bounded by .

For two nonfaulty clocks p and ¢, the time immediately following their
¢’th round of synchronization is maz(t;, tfz)' The main step in the argument
is to show that the skew between the readings IC;,(t) and IC;(t) at time
t = maz(t,,t,), is bounded by a quantity és. This is shown by induction
on ¢, and employs the conditions of initial skew, translation invariance, and
precision enhancement.

We now knqw that the clocks IC’;, and IC; start off no more than ég
apart at ma:c(t;,,t;). By bounded interval and bounded drift, the skew be-
tween IC;,(t) and IC;(t) does not increase by more than 2pr,,,; in the
interval maz(t,,t;) <t < min(ty,t}). Assuming that t;t! < t3¥1) then the
restriction of accuracy preservation on the convergence function is used to
bound the skew between IC},(tt!) and ICi*!(#i*1). By bounded delay and
bounded drift, the additional skew between the readings IC;;(t) and IC;“(t)
over the interval t;*! <t < £;*1 is no more than 2p3. To obtain the final re-
sult, we need to constrain the quantities P5 65, Tmin, Tmaz, and B so that the
skew bounds derived over the various intervals are within 8. Schneider also

shows that the restrictions of translation invariance, precision enhancement,
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and accuracy preservation, are satisfied by many of the known Byzantine
fault tolerant convergence functions {1].

2.3.2 The Proof

The details of the proof of bounded skew are presented below. Let t5}

denote mam(t;,t;). The first major step in Schneider’s proof is to prove:

Theorem 2.3.1 There is a bound 65 such that for synchronization round i
and any two nonfaulty processors p and ¢

[ICi(t, ) — IC;(tp )l < bs. (2.3.20)

Proof. The proof of Theorem 2.3.1 is by induction on the round number
t.

Base case:  When i = 0, by (2.2.13) we have ¢ = t3 = 0. Then by

Definitions (2.1.3) and (2.1.1), ICY(3) = PCp(0) and ICY(ty) = PCy(0).

The condition of initial skew asserts |PCy(0) — PCy(0)] < bs. Hence,
|1C9(0) - ICY(0)| is also bounded by bs.

Induction case: The induction hypothesis asserts that for every pair of
nonfaulty processors, { and m

[Cj(t} ) = ICH(# )] £ 8s. (2.3.21)
The goal is to establish for any pair of nonfaulty processors p and g, that
[ICEH () = ICH (G < bs. (2.3.22)

~ Without loss of generality, assume that ti+! precedes i+ so that il =
tit1. Then Equation (2.1.8) yields

IC(tiY) = cfn(q, 037) + PCy (1) = PCo(t;™). (2.3.23)
By Equation (2.1.5), we have

ICHY(t51) = cfn(p, O51). (2.3.24)
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The condition of translation invariance provides an estimate of IC;+1(t;,+1)
in terms of the convergence function cfn. With @;‘H for @ in Equa-
tion (2.2.17), we get

cfn(g, O;t1) + PC(t5H1) — PC (1)
= cfn(g,(An: O} (n) + PCo(511) — PC, (1Y), (2.3.25)
By (2.3.24) and (2.3.25), the bound on the initial skews can be rewritten as
follows:
i+l 40 i+1i+1
'Icq+1(tp+l) - Icp+ (tp+ )I ‘ '
= lefa(g,(An: 077 (n) + PCo(t;F1) — PC,(£i1)))
—cfn(p, O3t1)). (2.3.26)
The right-hand side of (2.3.26) can be bounded by n(z,y) for some z and
y using precision enhancement with (An: @t (n) + PC,(t5t1) — PC(tit1))
for v and O;‘H for 8. The set C in precision enhancement is taken to be
the subset of nonfaulty clocks as permitted by bounded faults. The next few
steps demonstrate that the remaining hypotheses of precision enhancement

can be satisfied with these substitutions. To satisfy Hypothesis 1, we need
to find an z such that for any nonfaulty ! we can derive

(O (1) + PC, (i) - PC,(t*1)) — 05 (1)] < =.

As shown below, the value 2p3 + 2A can be substituted for z. B}; Equa-
tion (2.2.16), we easily get

[ICi(t) - 0 ()] < A, and (2.3.27)
HCi(tt) - 05 ()] < A. (2.3.28)

Note that t;{H - t;“ < B by (2.2.12). So from Equation (2.1.3) and bounded
drift, we have

[(TCHEF) + PC(tY) — PC,(£i+1)) - ICi(£:Y))|
(PCo(t™) = PCo(tg*1) = ICI(5) - IC(£5+))]
[(PCo(tH1) = PC(ti+1)) — (PC(£5HY) — PCy(£i1)))

< MM+ -t = (1= p)(tt — 1Y)
= [2p(t;" - gt
< 2p8. (2.3.29)
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Putting together Equations (2.3.27), (2.3.28), and (2.3.29), we get the re-
quired inequality

|0;+1 )+ ch(t;+1) - PCq(t;‘*'l) — O;+1(l)| < 2pB8 + 2A. (2.3.30)

The substitution 2p8 + 2A for z thus satisfies Hypothesis 1 of precision
enhancement.

The next step is to satisfy Hypotheses 2 and 3 of precision enhancement
for the specified substitutions. For these, we need a y such that for any
nonfaulty processors | and m, the following inequalities hold.

[(©51(1) + PCo(1;") = PCo(t5t)) -
(O (m) + PC(t5t") = PCo(t7H' ) < v (2.3.31)
O ()-8 (m)l < (2.3.32)
Since (2.3.31) can be simplified by cancellation, both (2.3.31) and (2.3.32)
can derived by deriving a bound y such that for all nonfaulty clocks k, I,

and m, we get . ‘
|0 (1) - O (m)| <y (2.3.33)

First note that
|05F1(1) — 0t (m)]
< O ~ ICHE™) + [ICH () - ICL ()] +
105+ (m) — ICH(tH)| (2:3.34)

In (2.3.34), we know by Equation (2.2.16) that

01 () - ICI(#)] < Aand (2.3.35)
O} (m) - ICL, (6] < A (2.3.36)

By the induction hypothesis (2.3.21), we get
[ICi(tim) = IC(tim)| < bs. (2.3.37)

We know by (2.2.15) that, t{*! ~t} . < rmaz + 8. Then by (2.1.3), (2.2.10),
and (2.3.37), we get

[ICI(tF") = ICH () < b5 + 20(Tmaz + B)- (2.3.38)
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Combining Equations (2.3.34), (2.3.35), (2.3.36), and (2.3.38), we get
|0i+1(1) — O (m)| < 85 + 20(Fmaz + B) + 2A. (2.3.39)

So the expression 85 + 20(Tmar + B) + 2A is the required bound y satisfying
both Hypotheses 2 and 3 of precision enhancement.
If we now choose ég so that

T(2A 4+ 20p,85 + 2p(Tmaz + B) + 2A) < b5, (2.3.40)

then the conclusion of precision enhancement along with Equation (2.1.6)
ensures that _ ' _ ‘
|IC;+1(t;,+1) - IC’;"’I(t;fl)l < és

to complete the proof of Theorem 2.3.1. n

We have now shown that for any pair of nonfaulty processors p and g,
the skew between their clock readings at t;, ., given by [ICy(t}, ) —IC3 (2}, ,)l,
does not exceed 5. The next step is to show that for any ¢, the clock skew
between 5, and t3*1, is bounded.

Theorem 2.3.2 For any two nonfaulty clocks p, q, and t;, / <t < t5t!,
[VCp(t) — VCy(t)] < 6. (2.3.41)

Proof. Assume without loss of generality that ti*! < ti*1. The proof has
two cases according to whether ¢, <1t < t;"’l or t;’rl <t< t;,“.

Case 1:  Assuming t;',,q <t< tf1+1, from bounded interval we get t—t;,,q <

Tmaz- By Equation (2.1.4), it is clear that for ¢ in this interval VC,(2) =
ICL(t) and VC,y(t) = IC(t). Then by (2.2.10) and (2.1.3), it follows that
VC,(t) = VO] < IVCy(thg) = VOt )l 4 207mas.  (2.3.42)
Recall that Theorem 2.3.1 yields
[VCp(th ) ~ VCo(th )] < 6s. (2.3.43)
Combining Equations (2.3.42) and (2.3.43), we have
|[VCp(t) — VCo(t)| £ b5 + 2prmaz- (2.3.44)
The bound é should therefore be chosen so that

bs + 2pTmazr < 6. (2.3.45)
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Case 2:  Assuming ;! <t < tit!. In this interval, VC,(t) = ICTH (1),
whereas VC,(t) = 1 C;(t). The strategy here is to bound the skew at tfl“
and then compute the additional quantity by which the clocks can drift
apart in the given interval. By Equations (2.1.5) and (2.1.4), we have

[VC,(tih) = VO (i) = [ICH(E) - of(g, 051 (2:3.46)

We now need to use the condition of accuracy preservation with C as the
subset of nonfaulty processors as allowed by bounded faults. To satisfy the
hypothesis of accuracy preservation, we need a bound z such that, for any
pair of nonfaulty clocks { and m,

|01 (1) — 03 (m)| < . (2.3.47)

The next few steps are similar to those required to establish Hypotheses 2
and 3 of precision enhancement. By Equation (2.2.16), we have

O () - ICI(t*)] < A (2.3.48)

|©;H(m) — IC, (1Y) < A (2.3.49)

By Equation (2.2.15), t;“ - tf'm < Tpaz + B holds. Theorem 2.3.1
and (2.2.10) can now be applied to get

[TCH(EFY) = ICH(GH)] < b5 + 2p(rmas + B). (2:3.50)

Letting z be 65 + 2p(rmqez + B) + 2A, and substituting p for ¢ and ¢ for
P in accuracy preservalion, we can combine Equations (2.3.48), (2.3.49),
and (2.3.50), to get

lefn(q, ©;11) — 05 (p)] < a(8s + 2p(Fmaz + B) + 2A). (2.3.51)

Since Equation (2.2.16) yields |0}+!(p) — IC;(ti*)| < A, it follows from
Equations (2.3.51) and (2.3.46), that

[VCo(t5t) = VCo(tith))]
= [ICy(te*") — cfn(q, O]
< albs+2p(Tmaz + 8) + 2A) + A (2.3.52)

Having bounded the skew at tf1+1, we can bound the skew over the in-
terval #*! <t < ¢3!, by observing that t5t! — i1 < 8 by (2.2.12), and
applying Equation (2.2.10) to derive the inequality,

[VCo(t) = VCo(t)] < (85 + 20(Tmaz + B) + 2A) + A + 2p8.  (2.3.53)
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Therefore § has to be chosen to satisfy

a(bs + 2p(Tmez + B) +2A) + A+ 2pB < 6. (2.3.54)

This completes both cases of the proof of Theorem 2.3.2. =
Theorem 2.3.2 forms the induction step in the proof of the following
theorem.

Theorem 2.3.3 For any two nonfaulty clocks p, q, and t < t;.q
[VCu(t) ~ VC,(1) < 6 (2.3.55)

Proof. The proof is by straightforward induction over ;. When ¢ = 0,
the antecedent fails since t:,,q = 0. The induction hypothesis asserts that for
t < ty,,, the quantity |VCp(t) — VCy(t)| does not exceed §. The induction
conclusion requires showing that § bounds |VC,(t) — VC,(t)| even when
t< t;,'gl. We observe that either ¢ < ?;;,q, in which case the conclusion follows

from the induction hypothesis, or, e St< t;,‘f;l, and the conclusion easily
follows from Theorem 2.3.2. [

One small step remains in the proof of bounded skew from Theorem 2.3.3.

Theorem 2.3.4 For any t > 0 and nonfaulty processors p and q, there is
an i such that

t<th.
Proof. By bounded interval, 0 < Ponin < t{,‘” - tf,. Thus, tf,“ > Tmin. I
we let ¢ be [t/Tmin] + 1, then t, > t. ]

The main result, Theorem 2.1.1, easily follows from the Theorems 2.3.3
and 2.3.4.

We take note of the various conditions on é and §5%:

1. 7(2A +208p,65 + 2p(Timar + B) + 2A) < s, by 2.3.40.
2. b5 + 2pT ez < 6, by 2.3.45

3. a(bs + 2p(Tmazr+ B) +2A)+ A+ 2p3 < 6, by 2.3.54

This concludes the informal presentation of the proof.

5Note that these conditions are significantly different from those derived by Schnei-
der [1] due to various inaccuracies that have been corrected in the mechanical proof.
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2.4 ICA as an instance of Schneider’s scheme

The egocentric mean function which is used as a convergence function in the
Interactive Convergence Algorithm of Lamport and Melliar-Smith [3] can be
shown to satisfy Schneider’s conditions of translation invariance, precision
enhancement, and accuracy preservation.

With the interactive convergence algorithm, the convergence function
cfn; takes the egocentric mean of p’s estimate of the readings of the N
clocks numbered from 0 to N — 1, i.e., any readings that are more than A
away from p’s own reading are replaced by p’s own reading. This yields the
definition

cfnr(p,8) = s’ f;x”(o(l)) (2.4.56)
where _
fizp(z) = { 0(0) gth;Nfs(g)l =8
Translation invariance follows from the observation that
Sizp((Al: 0(1) + t)(q)) = fiz,(6(q)) + ¢ (2.4.57)
and

G ORI Zﬁa;(ﬂ(l)) 11 (2.4.58)

5 =

To demonstrate precision enhancement, we start with a set of processors
C of cardinality |C| greater than N — F. Let f be N —|C|. The hypotheses
for precision enhancement are that for any ! and m in C,

[y()-6()| <= (2.4.59)
ly()—r(m)| <y (2.4.60)
16(1) — 6(m)| <y (2.4.61)

We need to determine m(z,y) so that for any p and ¢ in C, we get

lefng(p,v) — cfni(g,0)| < m(z,y). (2.4.62)
This difference can be rewritten as

T fizp(v() TG fiz (6(1)
N N
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which is no greater than

iss fizy(v(1) - fizg(6(D)]
AI

This in turn can be rewritten as

Liec lf1zp(v(1) — fizg(8(1))] + Lige | fizp(y(D) — fizg(6(1))]
N N

Assuming y < A and ! € C, we get fizy(7(1)) to be y(1) and fiz (8(1)) to
be 6(1), so that

|fizp(v(1)) = fizo(8(1))| < 2

and hence,
Liec [fizp(v(1) = fizo(B(D)] _ (N - Nz
N - N

For I ¢ C, the difference

[fizp(v(D) = fizg(6(1))] < 2A + |y(p) - 8(g)| < 28 +z + y
and hence

Suge | fizp(v(1)) = fiz,(8(1))|
N

We thus get, when y < A, that

(N-f)z+2fA+f$+fy
N N )

In the typical situation when the egocentric mean is computed, the quan-
tity z representing the reading error is negligible, and y representing the
clock skew is bounded by A. Since the skew following synchronization should
be smaller than A, we can see that in Equation (2.4.63), the number of failed
processors f should be below N/3. Though the derivation of m(z,y) for the
case when y > A is carried out in the machine proof, it is not essential since
in practice, y will not exceed A

To show that c¢fn; satisfies accuracy preservation, it is sufficient to ob-
serve that if all the nonfaulty clocks are within z of each other, then the
nonfaulty clocks can cause the egocentric mean to be at most (N - f)z/N
away from any nonfaulty clock. The faulty clocks can cause the egocentric

2fA+ fz + fy
N .

<

m(z,y) = (2.4.63)
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mean to be up to f x (z + A)/N away from a good clock. The total thus

yields §
A
a(z) =z + N

The final step is to demonstrate the failure of the monotonicity condition
for ICA. The monotonicity condition mentioned at the end of Section 2.2
asserts that if for each processor I, 8(1) > 7(!), then cfnlp,0) > cfn(p,7)-
The key reason for the failure of the monotonicity condition is that if some
readings in 7 were ignored because they were more than A below v(p) but
were increased in @ so that they were no longer ignored, then cfn(p, 8) could
effectively be smaller than cfn(p,7) even though for every I, 8(1) > ¥(1).
More specifically, let 8(p) = 7(p). Observe now that if there is some [ such
that 8(1) + A < 6(p), but with v(p) > (1) > v(p) — &, then fiz,(6(1)) >
fiz,(7(1)) holds. So, it is possible to have fiz,(6({)) > fiz,((1)), even
though we have 8(1) < v(!).

For the mechanical verification of ICA as an instance of Schneider’s pro-
tocol, we have verified the constraints, i.e., translation invariance, precision
enhancement, and accuracy preservation, hold for the egocentric mean taken
as a convergence function. We have not yet instantiated the quantities rmin,
Fmaz and B, nor verified the conditions of bounded interval, bounded delay
and nonoverlap, since these depend on specific implementation choices. It
would also be useful to mechanically verify various other Byzantine fault tol-
erant clock synchronization algorithms to be instances of Schneider’s scheme.
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Chapter 3

The Verification of
Schneider’s Protocol using
Enpm

The outline in Chapter 2 was adapted from Schneider’s description but dif-
fers from his presentation in many of the details. The mechanized formaliza-
tion using EHDM follows the informal description in Chapter 2 fairly closely.
We illustrate the highlights of the machine proof below and indicate the
correspondence to the informal description. Details regarding the language
and capabilities of EHDM are contained in the EEDM tutorial document [2].

3.1 The Clock Assumptions

This section contains the EADM formalization of the conditions axiomatiz-
ing the behavior of clocks. These axioms are contained in a module labeled
clockassumptions that is listed in Appendix B starting from page 51. Fig-
ure 3.1 contains the type declarations for some of the variables and constants
used in clockassumptions. The clockassumptions module makes use of
the module arith, which contains the basic arithmetic facts, and countmod,
which introduces a counting function. Nonfaultiness is expressed by the
predicate correct.

The first few axioms express various minor constraints on the constants
as shown in Figure 3.2.

The axioms constraining the physical behavior of the clock appear in
Figure 3.3. Since we require the initial skew bound g to not exceed és,
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clockassumptions: Module

Using arith, countmod

Exporting all with countmod, arith
Theory

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number

Iv m,n,p,q, P, P2, 41,92, P3» q3: Var process

i,j,k: Var event

z,y,2,7,8,1: Var time

X,Y,Z,R,S,T: Var Clocktime

~,8: Var function[process — Clocktime]

8, i, P, Tmin, Tmaz, B, A: number

PC,1(*2), VCy1(*2): function[process, time — Clocktime]

t*2: function[process, event — time]

©2: function[process, event — function[process — Clocktimel]
IC*%(%3): function[process, event, time — Clocktime]

correct: function[process, time — bool]

cfn: function[process, function[process — Clocktime] — Clocktime]
x: function[Clocktime, Clocktime — Clocktime]

a: function[Clocktime — Clocktime]

Figure 3.1: Declarations from module clockassumptions
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delta_0: Axiom é§ >0
mu0: Axiom u >0
rho.0: Axiom p >0
rho.1: Axiom p < 1
rmin(): Axiom rpy;, > 0
rmax 0: Axiom 7 > 0

beta_0: Axiom >0

lamb 0: Axiom A >0

Figure 3.2: Constants in module clockassumptions

axiom init essentially corresponds to initial skew. Axiom correct_closed
asserts that a failed processor never recovers. Axioms rate_i and rate_2
together express the bounded drift condition. The axioms rts0 and rtsi
capture the bounded interval condition. These axioms look strange because
the variable ¢, needed to properly capture the correctness condition, appears
in them but not in bounded interval. Most of the obvious ways of stating
these axioms are either too restrictive or wrong. The axiom rts2 captures
bounded delay, and synctime_0 is just initial synchronization. The condition
of nonoverlap appears as an antecedent to the concluding theorem rather
than as an axiom. In the IXTEX format below, multiplication is represented
by * as well as x. These are synonymous, but the latter represents the
uninterpreted form of multiplication whereas the former is interpreted by
the linear arithmetic decision procedures of EHDM.

The definitions of the virtual clock and the interval clock in terms of the
physical clock appear in Figure 3.4. These correspond to (2.1.1), (2.1.4),
and (2.1.3), respectively.

The conditions on the convergence function appear in Figure 3.5. The
axiom Readerror corresponds to the condition reading error. The axiom
correct_count corresponds to bounded faults. The remaining correspon-
dences should be self-evident.

Some of the definitions and lemmas from the module clockassumptions
have been omitted from this discussion.
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init: Axiom correct(p,0) D PC,(0) > 0 A PCp(0) < p

correct_closed: Axiom s > t A correct(p, s) D correct(p,t)

rate.1l: Axiom correct(p,s)As >t D PCp(s) — PCp(t) < (s —t)x (1 +p)
rate.2: Axiom correct(p,s)As >t D PCp(s) — PCp(t) > (s —t)x (1 — p)
rts0: Axiom correct(p,t) At < tyt! Dt — t; < Pmaz

rtsl: Axiom correct(p, t) At > ti+! Dt — 1} > rmin

rts_0: Lemma correct(p, t;‘“) o) t:,“ —t, < mar

rts_1: Lemma correct(p,ti,“) ») t:,“ — t;, > Tmin

rts2: Axiom correct(p,t) At > t; + B Acorrect(g,t) Dt > t;,

rts2: Axiom correct(p, ty) A correct(g, tt) Dty — th<p

synctime_(: Axiom tg =0

Figure 3.3: Physical clock axioms in module clockassumptions

VClock.defn: Axiom _ .
correct(p,t) At > th At < t;¥! D VCy(t) = IC,(t)

Adj: function[process, event — Clocktime] =
(Ap,i:(if i > 0 then cfn(p,©}) — PCy(t}) else 0 end if))

IClock._defn: Axiom correct(p,t) D IC:,(t) = PCp(t) + Adj(p, 1)

Figure 3.4: Clock definitions in module clockassumptions
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Readerror: Axiom correct(p, th+?) A correct (g, t,t1)
DOyt (¢) = IC () < A

translation_invariance: Axiom
X > 0D cfn(p, (A p1 — Clocktime: y(p1) + X)) = cfn(p,7) + X

ppred: Var function[process — bool]
maxfaults: process
okay Readpred: function[function[process — Clocktime], Clocktime,
function|[process — bool] — bool] =
(Av,Y,ppred: (VI,m:ppred(l) A ppred(m) D |y(I) — v(m)| < Y))
okay_pairs: function[function[process — Clocktime],
function[process — Clocktime], Clocktime,
function[process — bool] — bool] =
(27,8, X, ppred: (V p3: ppred(p3) D |v(ps) — 8(ps)| < X))
N: process

N.0: Axiom N > 0
N_maxfaults: Axiom maxfaults < N

precision_enhancement_ax: Axiom
count(ppred, N) > N — maxfaults
A okay _Readpred(y, Y, ppred)
A okay Readpred(f,Y, ppred)
A okay _pairs(y, 8, X, ppred) A ppred(p) A ppred(q)
> |efa(p,7) - cfn(a, B < T(X,Y)

correct.count: Axiom count(( A p: correct(p,t)), N) > N — maxfaults

accuracy._preservation_ax: Axiom
okay_Readpred(v, X, ppred)
A count(ppred, N) > N — maxfaults A ppred(p) A ppred(q)
D |efa(p,y) — (@)l < a(X)

Figure 3.5: Conditions on Logical Clocks in module clockassumptions
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agreement: Lemma 8 < rpyin
Ap<OsAT(2+A+2+Bxp bs+2%((rmaz +B)*p+A)) < s
Abs+2%Taxp<é
Aa(bs+2% (Tmaz+B) xp+2+xA)+A+2+Fxp <6
At > 0 A correct(p, t) A correct(q,t)
D{VCp(t) = VC (1) <6

Figure 3.6: Main Theorem in module lemma final

okaymaxsync: function[nat, Clocktime — bool] =
(A4, X:(YVp,g: .
correct(p, ty, ,) A correct(q,tp )
S |ICH () — ICY(th )| < X))

lemma2: Lemma 5 < 7min
Ap<XAT2+A+2*8xp, X +2%((*maz +B)*p+A)) <X
D okaymaxsyne(i, X)

Figure 3.7: Skew immediately following resynchronization from module
readbounds

3.2 The Proof Highlights

The conclusion corresponding to Theorem 2.1.1 is the theorem agreement
that appears in the module lemma final listed at page 79 of Appendix B.
This theorem is displayed in Figure 3.6. It should be compared to the
statement of Theorem 2.1.1 (page 8) and to the conditions at the end of
Section 2.3.2 (page 21). The axioms, definitions, and lemmas used, whether
in a direct or indirect manner, in the proof of agreement are analyzed in
Appendix C.1 to ensure that all proof obligations have been discharged.
Both the process and the result of checking these dependencies are part of
what is termed the proof chain analysis.

The verified version of Theorem 2.3.1 is given in Figure 3.7 extracted
from the module readbounds listed at page 63 of Appendix B.

The verified version of Theorem 2.3.2 appears in Figure 3.8 which is taken
from the module 1emma3 listed at page B of Appendix B. The expression
t‘('pﬂq)[i] is an alternative notation for t;.q since (p 1} q)[¢] represents pif t; > t;,
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okayClocks: function[process, process, nat — bool] =

(Ap,q,i:(Vt: .
t>0At< tzpﬂq)[,-] A correct(p,t) A correct(q, t)

DIVCH(t) ~VC,y(t)] < 6))

lemma3.3: Lemma 8 <
/\yg65/\1r(2*A+2*,6*p,65+2*((rmm,+ﬂ)*p+A))565
Abs+ 2%y xp<é
Na(bs + 2% (rmar + B) xp+ 24 A)+ A+ 24 B%p< 6
D okayClocks(p, ¢, i)

Figure 3.8: Skew up to ith resynchronization from module lemma3

and ¢ otherwise.

The EnpM definition of the egocentric mean function is given by icalg
in Figure 3.9.

The verification of the translation invariance, precision enhancement,
and accuracy preservation properties of the egocentric mean function is pre-
sented in Figure 3.10. The proof chain analyses for these theorems appear
in Appendices C.2, C.3, and C.4.
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process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number

l,m,n,p,q,P1,P2,q1, 42, P3,43: Var process

i,j,k: Var event

z,y,z,1,8,1: Var time

X,Y,Z,R,S,T: Var Clocktime

fun, v, 8: Var function[process — Clocktime]}

ppred, ppredl, ppred2: Var function[process — bool]

sigma.size: function{function[process — Clocktime], process — process] =
(A fun,i:4)

sigma: function(function[process — Clocktime), process — Clocktime] =
(A fun, i: ( if i > 0 then fun(i - 1) + sigma(fun,i — 1) else 0 end if))
by sigma.size

fix: function[Clocktime, Clocktime, Clocktime — Clocktime] =
(AX,Y,Z:(if |[Y —Z| < X then Y else Z end if))

iconv: function[process, function[process — Clocktime], Clocktime

— Clocktime] =

(A p, fun,Y:sigma(( A ¢:fix(Y, fun(q), fun(p))), N))

icalg: function[process, function{process — Clocktime], Clocktime

— Clocktime] = (A p,fun,Y:iconv(p, fun, Y)/N)

Figure 3.9: Egocentric mean from module ica
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ica_translation_invariance: Lemma
N > 0 Dicalg(p, (A g:fun(g) + X),Y) =icalg(p,fun,Y) + X

icalg_precision_enhancement: Lemma

ppred(p) A ppred(gq)
A count(ppred, N) > N — maxfaults

A okay_pairs(funl, fun2, X, ppred)
A okay_Readpred(funl, Z, ppred) A okay_Readpred(fun2, Z, ppred)
D icalg(p, funl, A) — icalg(q, fun2, A) < icalg.Pi(X, Z)

icalg.accuracy_preservation: Lemma
ppred(p) A ppred(q)
A count(ppred, N) > N — maxfaults A okay Readpred(fun, X, ppred)
D |icalg(p, fun, A) — fun(q)|
< ((N — maxfaults) » X + maxfaultsx (X + A))/N

Figure 3.10: Properties of egocentric mean from modules ica, ica3, and ica4
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Chapter 4

Conclusions

Rigorously proving the correctness of distributed protocols is an extremely
difficult task, with or without mechanical assistance. Fault-tolerant clock
synchronization is an excellent example of a problem where the algorithms,
though often simple, are not at all easily verified. In such cases, it is ex-
tremely important to have certain organizing principles which capture the
common features of the various protocols with convincing generality. Schnei-
der’s schema for Byzantine clock synchronization provides such principles to
unify the presentation and proofs of a number of different protocols. Schnei-
der starts with certain axioms constraining the behaviors of clocks, the se-
lection of synchronization times, and the convergence functions. He uses
these constraints to derive a bound on the skew between any two nonfaulty
clocks. It is worth noting for the discussion below that Schneider’s work is
described in an unpublished technical report that has not had the benefit of
widespread examination.

The formalization here revises a few details from Schneider’s presenta-
tion. Schneider’s notion of a global signal to trigger resynchronization has
been dropped because such a notion is difficult to instantiate for many pro-
tocols. Though the quantities rypq; and 7min have a different meaning from
Schneider’s, these differences ought not to matter in any of the bounds de-
rived. For instance, 7,,,, here bounds t;,‘“ - t;, but Schneider’s bound on
this quantity would be ., + 8. However, the significant quantity in the
proof is the difference t;;*’l - th and the bound on this quantity is rmer + 3
in either formalization. In other words, Schneider’s bounds on é and és
ought to have been the same as those derived in Section 2.3.2, but there
were certain minor errors of algebra in his proofs and some latitude in his
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argument. The derivation we present is extremely tight, given the structure
of the proof. Schneider’s monotonicity condition is avoided in the proofs
here. This condition is used heavily by Schneider in his arguments, but it
actually turns out to be false for many protocols. The statement of accuracy
preservation is also slightly different here from that of Schneider. Schneider
also presents the proof for the case of continuous resynchronization which is
not handied here.

The initial proof using EEDM took about a month. The proof has been
considerably revised and improved since that first effort. Verifying that
the egocentric mean function of ICA satisfied the conditions of translation
invariance, accuracy preservation, and precision enhancement, took about
two weeks. The EHDM modules are listed in Appendix B. The proof involves
182 theorems or lemmas. A rerun of the entire proof on a SUN 3/470 takes
3227 CPU seconds (see Appendix A).

An early difficulty in the verification attempt was in arriving at a sat-
isfactory formalization that suitably revised the one from Schneider. The
proper treatment of failure proved to be a pervasive and important diffi-
culty. Unlike other similar informal and machine-verified proofs, our for-
malization was careful to permit processors to fail at any time. Rushby and
von Henke [8], for example, regard processors as nonfaulty in an interval
between synchronizations only if they have been nonfaulty for the entire
interval. This is an adequate model for most practical purposes but it is
less general because it does not distinguish between processors that may
have failed at the beginning of the interval and those that failed at the very
end of an interval. An even coarser model, and the one unwittingly used in
most informal presentations of clock synchronization, is one where the only
correct processors are those that never fail. In some sense, this is acceptable
since often the only significant requirement is that a sufficient number of
processors be nonfaulty at any given time. However, such a formalization
allows no conclusion to be drawn regarding a processor which has yet to fail
but does eventually fail, since it is regarded as always having been faulty.

To illustrate the circularity lurking in the formalization of time and fajl-
ure, consider the following seemingly natural formalization of nonfaultiness
in an interval. Suppose that a processor is described as nonfaulty for an
interval if it functions normally through the end of the interval. Let the
end of the interval be the time at which the nonfaulty clocks indicate a cer-
tain reading or have performed a certain operation such as resetting their
readings. Suppose, for example, that the end of the interval is given by the
time ¢ when the slowest of the “nonfaulty” clocks p reads T'. Now suppose
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that p fails exactly at t. Then clearly the end of the interval is earlier than
t, but at any point earlier than ¢, processor p is nonfaulty and has yet to
read T. This “natural” definition of the end of an interval thus yields a
contradiction. Many similar problem arose frequently in attempting to set
down the clock axioms. The most natural statement of these axioms often
turned out to be either wrong or too restrictive. It is also important to ob-
serve that these problems would never have been noticed in most informal
presentations since these details, though important, would have been largely
ignored.

The most useful features of EHDM for this verification were the decision
procedures for linear integer and real inequalities and equalities. The in-
formal proof is of course replete with long chains of inequality reasoning,
and the decision procedures handled those steps in a fairly mechanical man-
ner. The higher-order features of the language were also used to formalize
the conditions of translation invariance, precision enhancement, and accu-
racy preservation, but these were not essential. These could have also been
formalized in terms of lists or finite arrays. The language of EADM under-
went a number of improvements during this project, and not all of these
improvements have been exploited in this proof. The use of predicate sub-
types would have permitted the introduction of types corresponding to the
non-negative and the positive numbers.

Fault-tolerant distributed protocols are sufficiently delicate to warrant
careful, formal, mechanized analysis. Schneider’s presentation of Byzantine
fault-tolerant clock synchronization protocols provides a valuable mathemat-
ical framework for such an analysis. The machine-checked proof of Schnei-
der’s protocol led to a more precise formulation of the protocol and a more
closely reasoned proof. It is inconceivable that the same degree of logical
rigor and accuracy could be achieved without computational assistance.
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Appendix A

Proof Summary

The proof summary is the result of executing a command to attempt to
prove all the proof declarations in the context. The only failures are in the
automatically generated proof declarations for the type correctness condi-
tions (tcc). The time given below is the running time on a SUN 3/470.

Proof summaries for modules on using chain of module top

Proof summaries for modules

Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module
Module

division_tcc:
tcc_proofs_tcc:
ica3_tcc:
icad4_tcc:
ica_tcc:
lemma_final_tcc:
countmod_tcc:
tcc_proofs:
ica3:

ica2:

ica:

ica4:

basics:
readbounds:
lemma3:
countmod:

clockassumptions:

lemma_final:
absmod:
division:

W o OO0ONN

i4

20

25
12
24
no

i85
11

on using chain of module top

successful
successful
successful
successful
successful
successful
successful
successful
successful
successful
successful
successful
successful
successful
successful
proois

successful
successful
successful
successful
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proois,
prootfs,
proofs,
proois,
proot,

prootfs,
proois,
preots,
prootfs,
prootis,
proofs,
proots,
proots,
proots,
proofs,

proots,
proois,
proofs,
proots,

CO O0OO0OO0COOONMNNDMWRLRO

o O OO

failures,
failure,

failures,
failures,
failures,
failures,
failures,
failures,
failures,
failures,
failures,
failures,
failures,
failures,
failures,

failures,
failures,
failures,
failures,

OO0 0000000000000

o O O O

erxrors
errors
erxrors
erxors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors

errors
errors
arrors
erxrors



Module multiplication: 11 successful proofs, O failures, O errors
Module arith: no proofs
Module top: 1 successful proof, 0 failures, O errors

Totals: 182 successful proofs, 15 failures, 0 errors

Total time: 3227 seconds.
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Appendix B

The Complete EEDM Proof

Note that the modules ending with _tcc are automatically generated during
type checking. The proofs declared in these modules may not succeed, but
all the automatically generated theorems have been proved as illustrated by

the completeness of the proof chain analyses in Appendix C.
multiplication: Module

Exporting all
Theory

z,Y,2,%1,Y1, 21,2, Y2, 22: Var number
x1 % %2: function[number, number — number] = (A z,y: (z * v)

multldistrib: Lemma z x(y +z) = zxy+ T *z

multldistrib_minus: Lemma zx(y—2)=z*xy—zxz

mult rident: Lemma zx1 ==z

mult lident: Lemma lxz =<z

distrib: Lemma (z+y) 2=z x2z+yx*z

distrib_minus: Lemma (z —y)x2 =T *z —y*z

mult_non_neg: Axiom ((z>0Ay>0)V(z<0Ay<0))ez*xy>0
mult_pos: Axiom ((z >0Ay>0) V(< 0Ay<0)<z+xy>0
mult_com: Lemma zxy=yx*xz

pos.product: Lemma z > 0Ay>0Dzxy >0
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multleq: Lemma 2 > 0Az>yDz*x2 > y*xz
multleq2: Lemma 2 > 0Az>yDzxz> 2%y
mult10: Axiom Oxz =0

multgt: Lemma z >0Az>yDzxz>yxz

Proof

mult_gt_pr: Prove mult_gt from
mult_pos {z — 2z — y, y — z}, distrib_minus

distrib_minus_pr: Prove distrib_minus from
mult Idistrib_minus {z — z, y — z, z « y},
multcom {z — z —y, y « 2},
mult_com {y — z},
multcom {z — y, y ~ z}

multdeq_2_pr: Prove mult.leq_2 from
mult_ldistrib_minus {z — z, y — z, z — y},
mult nonmeg {z — 2z, y — z — y}

multleq_pr: Prove multleq from
distrib_minus, mult nonneg {z «— z —y, y ~ z}

mult_com_pr: Prove mult_com from 1 x%2 , x1 2 {z — y, y « z}
pos.product_pr: Prove pos_product from mult.non_neg
mult_rident_proof: Prove mult_rident from %1 %2 {y — 1}
multident_proof: Prove multlident from +1 x+2 {z — 1, y « z}

distrib_proof: Prove distrib from
*xx2 {—z+y ye—2z}
*1 * %2 {y — z},
*l*x2 {x —y, y~ 2}

mult ldistrib_proof: Prove multldistrib from
*1xx2 {y —y+z, 2 —z}, x1xx2 , %l % %2 {y — 2z}

mult_1distrib_minus_proof: Prove multldistrib_minus from
*Ixx2 {y—y—z, 2 —z}, ¥l %22, x1 xx2 {y — 2}

End multiplication
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absmod: Module
Using multiplication
Exporting all
Theory

z,Y,2,%1,41,21,%2,Y2, z2: Var number
|+ 1|: Definition function[number — number] =
(Az:(if 2 < 0 then —z else z end if))

abs_main: Lemma |z| <z D (z < 2V -z < 2)

absleq.0: Lemma |z —y|<zD(x—y) <z

abs_diff: Lemma |z —y| < zD((z—y) <zV(y—2)<2)

absleq: Lemma |z} <z D (z <zV-z<2)

abs.bnd: Lemma 0 <zA0<zAz<zA0<yAy<zDlz—y|<z
abs_.1bnd: Lemma [z -yl <zDzx<y+z

abs2.bnd: Lemma |z —y|<z2Dzx>y—=z

abs 3 bnd: Lemmaz<y+zAz>y—-zD|z—yl <z

abs.drift: Lemma |z —y| < zA|zy—z|< a1 Djei—y <2+ 2
abs_com: Lemma |z — y| = |y — z|

abs_drift 2: Lemma
lt—y|<zAlmi—z|<nAl-yl<2Ddlzi-nllz+at+zn

abs_geq: Lemma z > yAy > 0D |z|> |yl
abs_ge0: Lemmaz > 0D |z|=2z
abs_plus: Lemma |z + y| < |z] + |yl
abs_diff 3: Lemmaz —y<zAy—z<zDlr—y| <z
Proof
abs_plus_pr: Prove abs_plus from |x 1| {¢ — z +y}, [x 1], | x1| {z « v}
abs_diff_3_pr: P;'ove abs_diff 3 from | % 1| {z — z — y}

abs_ge0_proof: Prove abs_ge0 from |« 1
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abs_geq_proof: Prove abs_geq from |x1], |x 1| {z — y}

abs_drift_2_proof: Prove abs_drift.2 from
abs_drift,
absdrift {z —y, y— w1, 222, 21 — z+ 21},
abs_com {z «— y; }

abs_com_proof: Prove abs_com from |« 1{ {z «— (z — y)}, | * 1] {x — (y - 2)}

abs_drift_proof: Prove abs_drift from
abs_1_bnd,
abs_1.bnd {z — 21, y — z, z — 21},
abs_2_bnd,
abs.2.bnd {z — z1, y— 2, z — 21},
abs.3.bnd {z — 21, z — 24+ 2,}

abs_3_bnd_proof: Prove abs_3_bnd from |« 1| {z — (z — y)}

abs_main_proof: Prove abs_main from | * 1|

abs_leq_0_proof: Prove abs_leq.0 from |x 1| {z «— z — y}

abs_diff_proof: Prove abs_diff from | x 1| {z — (z — y)}

abs_leq_proof: Prove abs_leq from |+ 1|

abs_bnd_proof: Prove abs_bnd from |+ 1| {z — (z — y)}

abs_1_bnd_proof: Prove abs_1.bnd from | x 1| {z — (z — y)}

abs_2_bnd_proof: Prove abs_2_bnd from | x 1| {z — (z — y)}
End absmod
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division: Module

Using multiplication, absmod
Exporting all

Theory

,Y,2, 1,41, 71, T2, Y2, 720 VAT number
[+1]: function[number — int]

ceil_defn: Axiom [z] >zA[z]-1<z

mult_div_l: Axiom z #0 D zxy/z = = x(y/2)

mult div.2: Axiom z #0 D z+xy/z=(z/2) %y
mult_div_.3: Axiom z #0 D (z/z) =1

mult.div: Lemma y #0 D (z/y)xy ==z

div_cancel: Lemmaz # 0D zxy/c =y

div_distrib: Lemma z # 0 D ((z + y)/2) = (z/2) + (y/2)
ceil.mult div: Lemma y > 0D fz/y]l xy> =
ceil_plus.mult div: Lemma y > 0D [z/y] + 1lxy >z
div_nonnegative: Lemma z > 0Ay> 0D (z/y) >0
div_minus_distrib: Lemma z # 0 D (z — y)/z = (z/2) — (y/2)
divineq: Lemma z > 0 Az <y D (z/2) < (y/2)
abs_div: Lemma y > 0 D |z/y| = |z|/y

mult.minus: Lemma y # 0 D —(z/y) = (—z/y)
div_minus_1: Lemma y > 0Az <02 (z/y) <0

Proof

div_nonnegative_pr: Prove div_nonnegative from
multnon_neg {z — (if y # 0 then (z/y) else 0 end if}}, multdiv
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div_distrib_pr: Prove div_distrib from
multdiv.l {z —z+y, y—1, z — 2},
mult rident {z — z + y},
multdiv.l {z —z, y — 1, z 2z},
mult_rident,
multdiv.l {z —y, y— 1, z « 2},
mult_rident {z — y},
distrib {z « ( if z # 0 then (1/2) else 0 end if)}

div_cancel_pr: Prove div_cancel from
mult div.2 {z « z}, mult_div.3 {z — z}, multlident {z — y}

mult.div_pr: Prove mult_div from
mult div.2 {z « y}, multdiv.1 {z — y}, mult.div_3 {z — y}, mult_rident

abs_div_pr: Prove abs_div from
[ 1] {z « (if y # 0 then (z/y) else 0 end if)},
| %11,
div_nonnegative,
div_minus_1,
mult_minus

mult_minus_pr: Prove mult_minus from
multdiv.l {z — -1, y —z, z —y},
*1xx2 {z — -1, y « z},
*1x%2 {z  ~1, y — (if y # 0 then (z/y) else 1 end if)}

div_minus_1_pr: Prove div_minus_1 from
mult_div,
pos_product {z « (if y # 0 then (z/y) else 0 end if), y — v}

div_minus_distrib_pr: Prove div_minus_distrib from
div_distrib {y « —y}, mult.minus {z — y, y — z}

div_ineq_pr: Prove div_ineq from
mult_div {y — 2z},
mult div {¢ — y, y — 2},
mult_gt
{z — (if z # 0 then (z/z) else 0 end if),
y — (if z # 0 then (y/z) else 0 end if)}
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ceil_plus_mult_div_proof: Prove ceil_plus_mult_div from
ceil_mult._div,
distrib
{z — [(if y # 0 then (z/y) else 0 end if)],
y—1,
z —y},
mult lident {z — y}

ceil_mult_div_proof: Prove ceil_ mult_div from
mult_div,

mult_leq
{zx — [(if y # 0 then (z/y) else 0 end if)],
y — (if y # 0 then (z/y) else 0 end if),

z =y},
ceil_defn {z — ( if y # 0 then (z/y) else 0 end if)}

End division
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division_tcc: Module
Using division

Exporting all with division
Theory

z: Var number
y: Var number
z: Var number

mult.div.1. TCC1: Formula (z # 0) D (z # 0)

mult_div.TCC1: Formula (y # 0) D (y # 0)

div.cancel TCC1: Formula (z # 0) D (z # 0)

ceil mult_div.TCC1: Formula (y > 0) D (y # 0)

divnonnegative. TCC1: Formula (z > 0 Ay > 0)D(y#0)

div.ineq-TCC1: Formula (2 > 0A z < ¥) D(z#£0)

div_minus.1.TCCl: Formula (y > 0 A z < 0)D(y#0)
Proof

mult_div_.1. TCC1_PROOF: Prove mult_div_1_.TCC1

mult_div.TCC1_PROOF: Prove mult_div_TCC1

div_cancel TCC1_PROOF: Prove div_cancel TCC1

ceil mult_div_.TCC1_PROOF: Prove ceil_mult_div_TCCI1

div_nonnegative. TCC1_PROOF: Prove div_nonnegative_ TCC]1

div.ineq_TCC1_PROOF: Prove divineq_TCC1

div.minus_1 TCC1.PROOF: Prove div_minus_1_TCC]

End division_tec
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arith: Module
Using multiplication, division, absmod
Exporting all with multiplication, division, absmod

End arith
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countmod: Module
Exporting all
Theory

11 m,n,p,4, P, P2, 491,92, P3,93: Var nat
1,7, k: Var nat
z,y, 2,7, 8,t: Var number
X,Y,Z: Var number
ppred, ppred1, ppred2: Var function{nat — bool]
fun, funl, fun2: Var function[nat — number]
countsize: function[function[nat — bool], nat — nat] = (A ppred, i: ¢)
count: Recursive function[function[nat — bool], nat — nat] =
(Appred,i:(ifi >0
then ( if ppred(i — 1)
then 1+ (count(ppred,i — 1))
else count(ppred,i — 1)
end if)
else 0
end if)) by countsize

End countmod
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countmod_tec: Module
Using countmod

Exporting all with countmod
Theory

i: Var naturalnumber
ppred: Var function[naturalnumber — boolean]

count.TCC1: Formula (i > 0) D (: — 1 > 0)
count TCC2: Formula (ppred(i — 1)) A(i>0)D (i—12>0)
count_TCC3: Formula (~(ppred(i — )))A(i>0) D (i—12>0)

count.TCC4: Formula
(ppred(i — 1)) A (i > 0) D countsize(ppred, i) > countsize(ppred, i — 1)

count_TCC5: Formula
(~(ppred(i — 1))) A (i > 0) D countsize(ppred, i) > countsize(ppred, i — 1)

Proof
count_.TCC1_PROOF: Prove count_TCC1
count_TCC2_PROOF: Prove count_TCC2
count_TCC3_PROOF: Prove count_TCC3
count_TCC4_.PROOF: Prove count. TCC4
count_TCC5_PROOQF: Prove count_TCCH

End countmod_tcc
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clockassumptions: Module

Using arith, countmod

Exporting all with countmod, arith
Theory

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number

1) m,n,p,q,DPi, P2, 41,92, P3, ¢3: Var process

i,7,k: Var event

z,y,2,7,8t: Var time

X, Y, Z R,5 T: Var Clocktime

7,0: Var function[process — Clocktime]

8, 1y P, "min, P'maz, 5, A: number

PCy1(*2), VCyi(*2): function[process, time — Clocktime]

t¥2: function[process, event — time]

©}3: function(process, event — function[process — Clocktime]]
ICH3(x3): function[process, event, time — Clocktime]

correct: function{process, time — bool]

cfn: function[process, function[process — Clocktime] — Clocktime]
m: function[Clocktime, Clocktime — Clocktime]

a: function[Clocktime — Clocktime]

delta_0: Axiom 6 > 0

mu0: Axiom p >0

rho 0: Axiom p > 0

rho_1: Axiom p < 1

rmin0: Axiom rp, > 0

rmax_(: Axiom rpg; > 0

beta_0: Axiom >0

lamb.0: Axiom A >0

mit: Axiom correct(p,0) D PC,(0) > 0 A PC,(0) < u
correct_closed: Axiom s > t A correct(p, s) D correct(p, t)

rate_1: Axiom correct(p,s) As >t D PCp(s) — PCp(t) < (s —t)x (1 + p)
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rate_2: Axiom correct(p,s) A s >t D PCp(s) — PCp(t) 2 (s —t)x (1 — p)
rts0: Axiom correct(p,t) At < t:,"’l ot— t;, < maz

rtsl: Axiom correct(p, t) At > ;1 Dt — £y > Tmin

rts 0: Lemma correct(p,t:,+l) o) t;,“ - t:, < Pmar

rts.1: Lemma correct(p, tht?) Dttt — t5 > Tmin

rts2: Axiom correct(p,t) At 2> t; + B Acorrect(g,t) Dt > t:,

rts_2: Axiom correct(p, t:,) A correct(q,t;) D t;, - tfl <p
synctime.0: Axiom tJ =0

VClock_defn: Axiom . .
correct(p,t) At > th At < it D VCy(t) = IC,(t)

Adj: function[process, event — Clocktime] =
(Ap,i:(if i > 0 then cfn(p, ©}) — PCp(ty) else 0 end if))

IClock_defn: Axiom correct(p,t) D IC;(t) = PCp(t) + Adj(p,1)

Readerror: Axiom correct(p,tyt!) A correct(q, AR
D |05ttg) — IC () < A

translation_invariance: Axiom
X > 05 cfa(p, (A pr — Clocktime: 7(p1) + X)) = cfa(p,7) + X

ppred: Var function[process — bool]
maxfaults: process
okay _Readpred: function[function[process — Clocktime], Clocktime,
function[process — bool] — bool] =
(A7,Y, ppred: (¥ 1, m: ppred(!) A ppred(m) D [y(1) = 1(m)| < V)
okay_pairs: function[function[process — Clocktime],
function[process — Clocktime], Clocktime,
function[process — bool] — bool] =
(A7,9, X, ppred: (V p3: ppred(pa) O |v(ps) — 8(p3)| < X))
N: process

N_0: Axiom N >0

N_maxfaults: Axiom maxfaults < N
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precision_enhancement_ax: Axiom
count(ppred, N) > N — maxfaults
A okay_Readpred(y, Y, ppred)
A okay Readpred(6, Y, ppred)
A okay_pairs(7y, 8, X, ppred) A ppred(p) A ppred(q)
> lefa(p,7) — cfalg, 0)| < 7(X,Y)

correct_count: Axiom count(( A p: correct(p,t)), N) > N — maxfaults

okay Reading: function[function[process — Clocktime], Clocktime, time
— bool] =
(A7, Y, t:(Vp1,q:
correct(p;,t) A correct(q1,t) D [y(p1) — 7(q1)| £ Y))
okay_Readvars: function[function[process — Clocktime],
function[process — Clocktime], Clocktime, Clocktime
— bool] =
(A7,8,X,t:(V ps: correct(ps, t) D |¥(p3) — 8(p3)| £ X))

okay Readpred_Reading: Lemma
okay Reading(v,Y,t) D okay Readpred(, Y, (A p: correct(p, t)))

okay_pairs_Readvars: Lemma
okay_Readvars(v, 6, X,t) D okay_pairs(y, 8, X, (A p: correct(p, t)))

precision_enhancement: Lemma
okay Reading(y, Y, t;*!
A okay Reading(f, Y, t;+!
A okay Readvars(y,d, X, ti+1)
A correct(p, t;*1) A correct(q, ti+!)
D |efn(p,7) — cfn(q, 8)] < 7(X,Y)

okay Reading_defn_Ir: Lemma
okay Reading(y, Y, )
D (V1,11 correct(py, t) A correct(qi, t) D |(p1) — Y(q1)| < Y)

okay Reading_defn_rl: Lemma

(VY p1,q1: correct(py, 1) A correct(g1,t) D |v(p1) — ¥(q1)] < Y)
D okay Reading(y, Y, t)

okay Readvars_defn_Ir: Lemma
okay_Readvars(y, 8, X,t) D (V ps: correct(p, t) D |7(p3) — 8(p3s)| < X)

okay Readvars_defn_rl: Lemma
(V pa: correct(ps, t) D |y(p3) — 6(ps)| < X) D okay_Readvars(, 6, X, t)
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accuracy_preservation_ax: Axiom
okay _Readpred(y, X, ppred)
A count(ppred, N) > N — maxfaults A ppred(p) A ppred(q)
D |efa(p, 7) — 7] < a(X)

Proof

okay Reading_defn_rl_pr: Prove
okay_Reading.defn_rl {p; — p1@P1S, q1 « ¢1@P1S} from okay_Reading

okay Reading-defn Ir_pr: Prove okay Reading defn_Ir from
okay Reading {p1 — p1@CS, ¢ — :@CS}

okay_Readvars_defn_rl_pr: Prove okay.Readvars_defn.rl {p3 — ps@P1S} from
okay Readvars

okay Readvars_defn_lr_pr: Prove okay_Readvars_defn_Ir from
okay Readvars {pa — p3@CS}

precision_enhancement_pr: Prove precision_enhancement from
precision_enhancement_ax {ppred — () ¢: correct(g, )},
okay _Readpred_Reading {t — ti*1},
okay_Readpred_Reading {t — t§*', v — 6},
okay_pairs_Readvars {t — t;',fl},
correct_count {t «— t5+1}

okay_Readpred_Reading _pr: Prove okay Readpred_Reading from
okay Readpred {ppred « (A p: correct(p,t))},
okay Reading {p; — I@P1S, ¢, — m@P1S}

okay_pairs_Readvars_pr: Prove okay_pairs_Readvars from
okay_pairs {ppred — ( A p: correct(p, 1))}, okay Readvars {ps — pa@P1S}

rts_0_proof: Prove rts_0 from rts0 {t — t;‘H}
rts_1_proof: Prove rts_1 from rtsl {t — t;';“}

End clockassumptions
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basics: Module

Using clockassumptions, arith
Exporting all with clockassumptions
Theory

»,4q,pP1,P2, 91,92 Iy m,n: Var process

1,7, k: Var event

z,y,z: Var number

r,s,t,t;,t9: Var time

X, Y,Z,R,S, T, Ty, T>: Var Clocktime

7,8: Var function[process — time]

(1t ¥2)[x3]: Definition function[process, process, event — process| =

Ap,q,i:(if t4 > ¢ then p else ¢ end i )
P2l

maxsync.correct: Lemma correct(p, s) A correct(q, s) D correct((p f} 97, s)

minsync: Definition function[process, process, event — process] =
(Ap,q,i:(if t, 2 t; then g else p end if))
minsync.correct: Lemma correct(p, s) A correct(g, s) D correct((p I ¢)[i], s)

[

minsync_maxsync: Lemma Uosi] S t:pfrq)[i]

tff «2¢ Definition function[process, process, event — time] =
(Ap,q,i: tzpfm)[i])

lemma._1: Lemma correct(p, t3) A correct(q, YA B < rmin
i
Sth<t
lemma1_1: Lemma correct(p, tgt!) A correct(g, it ) A B < rpin
Dt <tit!

lemma_1.2: Lemma correct(p, t5+1) A correct(q, th)
. t;:n-H < t:l + Pmaz + B

lemma2.0: Lemma correct(p, 0) A correct(g, 0) D IICg(O) - IC?(O)I <p

lemma_2.1: Lemma correct(q, ty+)
D ICH () = cfa(q, ©FFY)

lemma_2_2a: Lemma . '
correct(g,s)As >t D ICY(s) S IC,(t) + (s — t) x (1 + p)
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lemma2_2b: Lemma . A
correct(g,s) A s > t D ICy(s) 2 IC () +(s—t)x (1~ p)

abs_shift: Lemma |r—s| <z
/\t1§r+y+z/\t1Zr+y—z/\t2§s+y+z/\t225+y—z
Dltl—t2|§x+2*z

ReadClock.bndl: Lemma
correct(p, t5t") A correct(g, )
D Oitlg) < IC (M) + A

ReadClock bnd2: Lemma
correct(p, tit!) A correct(g, t*h)

> Oitlg) > ICy () — A

ReadClock_bndll: Lemma
correct(p, t5+1) A correct(g, th+1) A correct(p1,tp,) A B < Tmin

o 9;:“'1) < IC:(t;,) + (t:;H - t;,) + (*maz + B)yxp+A

ReadClock.bnd12: Lemma ,
correct(p, tit?) A correct(g, A correct(py,t),) A B < Tmin

> Oitlg) > ICH(ty,) + (5! = t5,) = (Tmaz + B)xp—A

ReadClock bnd: Lemma
correct(p, t;+1) ‘
A correct(g, t5+!)
A correct(ql,t;“)
WGt ) = 104 (8 )| S X AB < Tmin
) I@;,+1q) - O;;H‘ll)' <X 42+ ((rmaz + B)xp+A)

okay_Reading shiftl: Lemma
correct(p1,s) A s > tyt!
A ,B S Tmin
INQFXE _ .
correct(p, tp o) A correct(g,tp 4)
S Gt ) —~ ICi () € X)

> okay_Reading(©5t!, X + 2 * ((rmas + B)*p+A),s)

okay_Readvars_shift_step: Lemma
s>t —yAs<ti+y
/\tZtg—y/\t§t2+y/\0§t2—t1/\t2—t1 <z
Dls+z—t<2xy+z
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okay _Readvars_shift_stepb: Lemma
s>t —yAs<ti+y
/\tZtg—y/\t§t2+yA0§t2—t1/\t2—t1 S.’E
Dis—t<2*xy+=z

okay _Readvars_shift _stepl: Lemma
ls—ti| SyAlt -t Syn0<ta—t1 At —t1 <=z
Dls+z—t|<2*y+zx

okay_Readvars_shift_step2: Lemma
|s—t1|5y/\lt—t2|§y/\0§t2—t1/\t2~t1 <z
Dls—t|<2%y+=z

okay Readvars_shift1l: Lemma
correct(p, ;1)
A correct(q, t;*1) A correct (py, ti+1) Attt > ¢it
D Ot p1) + (PCy(t+) = PC,(t7+1)) — 0, p1)
<2xA4+2xBxp

okay Readvars_shift12: Lemma
correct(p, ;1)
A correct (g, t5+!) A correct (py, t5t1) A i+t > i
D Oyt p1) — (O p1) + (PCy (1) = PCy(8iH)))
2*xA+2%f3x%xp

okay Readvars_shiftl: Lemma
correct(p, t;+1)
A correct(g, tyt!) A correct (py, 5H1) A tiHL > i+
D [0 p1) = (OFF p1) + (PCy(t;+) — PC, (1))
<2xA42xfF%p :

okay _Readvars_shift2: Lemma
correct(p, ty*1)
A correct(g, ) At > ¥ AL > tit
D okay_Readvars(@:,+1,@;+l,2 *A+2xFxp,t)

okay_Rgadvars_shift: Lemma . _
t > t3+! A correct(p, 1) A correct (g, 1) A tytt >
D okay Readvars(©;*1,
(A p1 — time: ’ A
Ot p1) + (PC (1) — PC(tit))),
2% A+2xFx*p,
t)

Proof
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maxsync_correct_pr: Prove maxsync_correct from (x1 { #2)[*3]
minsync_correct.pr: Prove minsync_correct from minsync
minsync_maxsync.pr: Prove minsync.maxsync from minsync, (*1 ft x2)[*3]

okay _Reading_shiftl_proof: Prove

okay_Reading shiftl {p — p;@P1S, ¢ — ¢1@P1S} from
okay_Reading.defn_rl

{r — 651,

Y *‘X+2*((rmaz+ﬁ)*P+A),

t — s},
ReadClock.bnd {p — p1, ¢ — p1@P1S, ¢, — ¢:@P1S},
£33 «2 {p — P @P1S, ¢ — :@P1S},
maxsync_correct {p «— p1@P1S, g — ¢;@P1S, s — t;+!
correct_closed {p — p1@P1S, t — t:,*l’l},
correct_closed {p — q1@PI1S, t — t;}!},
correct_closed {p — p1@P1S, t —1t}, ,, 5 — GARES
correct_closed {p — 1 @P1S, t — t;.q’ § — t;‘:’l ,
correct_closed {p « p1, t — t;t1},
lemmal.l {g — p1, p ~ (p T 9)[i]}

ReadClock_bnd_proof: Prove ReadClock_bnd from
ReadClock_bnd11 {p1 — (¢ 1 q1){¢]},
ReadClock_bnd12 {p; — (¢  ¢1)[7]},
ReadClock.bnd1l {g «— g1, p1 < (¢ Tt q1)[i]},
ReadClock_bnd12 {g « g1, p1 « (¢ ¥ q1)[¢]},

lemmal.l {p — (¢t q1)[i], ¢ — p},
correct_closed

{p— (gt a)li],

8 <—t;,+1,

t—t 2}
(gtrg)E1
abs_shift .
{r — IC;(t;{ql),
13
§ = ICﬂl(t‘q,qx)'
tl — e;,+19))
tr — Ot q1),
ye= (t;‘+1 - t:lﬂl)’
Z — (rmar +ﬁ)*P+A7
r— X},

e {P—a¢ a—al, |
maxsync_correct {p — ¢, ¢ — q1, s — t;t'}

)
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ReadClock_bnd11_proof: Prove ReadClock_bndl1 from
ReadClock_bndl,
lemma 2.2a {s — t;*!, ¢t — 1} },
lemmal.2 {qg — p;},
lemmal {¢ — p, p —~ p1},
mult ldistrib {z — t;+! — th, ¥y 1, z < p},
multleq {z — rpaz + 8, y — t;,“ - t;w z — p},
mult rident {z — t;*! — 27 },
rho. 0

ReadClock_bnd12_proof: Prove ReadClock_bnd12 from
ReadClock_bnd2,
lemma2.2b {s —t;*!, t — ] },
lemmal1.2 {q — p;},
lemmal {g —p, p — 1},
mult Idistrib-minus {z — ;¥ — 1, |, y — 1, z — p},
multleq {z — rpaz + 8, ¥y — t:,‘H - t:,l, z «— p},
mult rident {z — i+ — ¢! },
tho 0

ReadClock-bnd1_proof: Prove ReadClock_bndl from
Readerror, I* 1| {x — e;;+lq) _ IC;(t;+l)}

ReadClock bnd2_proof: Prove ReadClock_bnd2 from
Readerror, i* 1| {z — @;;Q-lq) _ Ic;(t;)+1)}

okay Readvars_shift_stepl_proof: Prove okay.Readvars_shift_stepl from

okay.Readvars_shift step, |x1| {z — s—11}, |*x1| {z —t — 1t}

okay Readvars_shift_step2_proof: Prove okay_Readvars_shift_step? from

okay Readvars_shift stepb, | x 1| {z — s — 11}, | * 1| {z —t ~ 5}

okay Readvars_shift11_proof: Prove okay_Readvars_shift11 from
ReadClock-bnd2 {¢ — p },
ReadClock bnd1 {p — ¢, ¢ — p1},
correct_closed {s — t;,“, t— t‘q“, Pep1},
correct_closed {s «— t;*1, — tH, p — g},
lemma2.2b {g — p1, s — t;*!, t —i*1},
rate_l {s — t;*!, t — t;“,_ P ‘I_},
multldistrib_minus {z — t;*! —#i*!, y — 1, z — p},
mult ldistrib {z — ¢+ - tf]“, ye—1, z —p},
multleq {z — 8, y «— t:,“ - t';H, z — p},
rts_2 {l — l+ l}a
rho 0
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okay _Readvars_shift12_proof: Prove okay Readvars_shift12 from
ReadClock_bndl {gq — p;},
ReadClock.bnd2 {p «— ¢, ¢ — p1},
correct_closed {s — tit!, t —ti*!, p—p1},
correct_closed {s — t;+!, t — ;7 p—q},
lemma2.2a {q — p;, s — it} t —t;*1},
rate.2 {s — t:,“, 1 — t;‘“, P +—q},
mult 1distrib_minus {z — ;! — tfl‘"l, y—1, z — p},
mult ldistrib {z — t;,“ — tf{“, y+—1, z—p},
multleq {z — B, y — tit! —t;*!, z —p},
rts 2 {t — i+ 1},
rho_0

okay_Readvars_shift1_proof: Prove okay Readvars_shiftl from
okay_Readvars_shift11,
okay_Readvars_shift12,
abs_diff_3
{y — O 1p) + (PC(t+1) = PC, (),
T — 9;;"‘1 ),
z—2xA+2x8x%p}

okay Readvars_shift_step_proof: Prove okay_Readvars_shift step from
|%x1| {z —s+z -1t}

okay Readvars_shift_stepb_proof: Prove okay_Readvars_shift_stepb from
[x1 {z —=s—t},|x1] {z —ta— 11}

okay_Readvars_shift_proof: Prove okay_Readvars_shift from
okay Readvars_shiftl {p; — ps@P2S},
okay_Readvars_defn_rl
{8 —( A p1 — time: ©4*1p)) + PC,,(t:,“) — PCq(th‘“)),
7 — Ot
X —2xA+2x%F*p}, .
correct_closed {s —t, t — t;*},
correct_closed {p —gq, s — 1, t — t;,‘“},
correct_closed {p — p3@P2S, s — 1, t — t3*!}

lemma_l_proof: Prove lemma.l from
rts_1 {p — q},
rts_2,
rmin_0,
correct_closed {p — ¢, s — t;‘“, t— tfz}
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lemma_l_2_proof: Prove lemma_1_2 from
rts.0,
rts_1,
rts_2,
rmin_0,
correct.closed {s —t3t1, ¢ — 11}

lemma_2_0_proof: Prove lemma2_0 from
synctime_0,
synctime_0 {p — ¢},
IClock.defn {p — ¢, i — 0, t « 0},
IClock_defn {i — 0, t — 0},
Adj {i — 0},
init {p — ¢},
init,
rts_1 {p — ¢, i — 0},
rts_1 {i — 0},
rmin_0,
mu_0,
abs_bnd {z — IC,(t3), y — IC(20), z — u}

lemma_2_1_proof: Prove lemma2.1 from
IClpck_defn {p—gq i—i+l, t—titl}
Adj {i —i+1, p—gq}

lemma._2_2a_proof: Prove lemma_2_2a from
IClock_defn {p — ¢, t — s},
IClock_defn {p ~ ¢},

rate_1 {p — g},
correct_closed {p «— ¢}

lemma_2_2b_proof: Prove lemma_2_2b from
IClock defn {p — ¢, t — s},
IClock_defn {p ~ ¢},
rate.2 {p — ¢},
correct._closed {p «— q}

abs shift_proof: Prove abs_shift from |x 1] {z — r — s}, | x 1] {z —t; —t2}
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lemma_l_1_proof: Prove lemma.__1 from

rts_1 {p —q},

rts2 {t — 31},

beta_0,

rmin_0,

correct_closed {p — q, s — tit!, t —¢;}

End basics
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readbounds: Module

Using basics, clockassumptions, arith
Exporting all with basics
Theory

P,4,P1,P2,91, 92,1, m, n: Var process

1,J,k: Var event

X,Y,Z,R,S,T,T1,T,: Var Clocktime

z,y,2z,r,5,t,t,t: Var number

7,8: Var function[process — Clocktime]

prop: Var function[nat — bool]

okaymaxsync: function[nat, Clocktime — bool] =
(A, X:(Vp, ¢

correct(p, t;,q) A correct(q, t:a.q)

D IC ()~ ICi(E ) < X))

okaymaxsync._defnir: Lemma
okaymaxsync(i, X)
O(VYpg: ‘ _
correct(p, ¢, ) A correct(q, tq)
> HIGH(E, )~ IC} (£ )| < X)

okaymaxsync_defn_rl: Lemma
(¥ p, g: correct(p, t; ,) A correct(q, £}, )
> [ICh(t, ) = ICH(E, )] < X)

D okaymaxsyne(z, X)
lemma_2_base: Lemma ux < X D okaymaxsync(0, X)

okay_Reading.shift2: Lemma
correct(p1, 5) As > it A B < ris A okaymaxsync(i, X)
D okay Reading(©5!, X + 2% ((rmaz + B) % p + A),s)

CfnIClockl: Lemma
correct(g, tg*1) A correct(p, ) AL > it
D ICTH (i)
= efn(g, (Ap1 — time: O+ py) + PC,(85+1) — PC,(ti+1)))

okay Reading_plus: Lemma
okay_Reading(7,Y,t) D okay_Reading(( A p; — time: ¥(p1) + X), Y, 1)
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lemma2.indl: Lemma
B < rm;n/\1r(2*A+2*ﬁ*p,X+2*((rmu+ﬂ)*p+A)) <X

A okaymaxsyne(i, X) . '

A t;',"'ll > ti+! A correct(p, ti+1) A correct(g, 5t

> |cfn(p, Opt1)
— ¢fn(q,
(X p; — time: . .
. ©it1p) + PCo(t5t") = PC(t )|
<

lemma2.abs_fact: Lemmma
1 St/\tStz/\'S—tﬂSX/\lS—tﬂSXD IS——t|SX

lemma2.ind3: Lemma
B < rm,-,,/\w(2*A+2*ﬂ*p,X+2*((rm“+ﬁ)*p+A)) <X
A okaymaxsync(i, X) _ .
AL > i1 A correct(p, ti+1) A correct(g, ;)
S [ICH () — ICH (I < X

lemma.2.ind step: Lemma ' .
HClpam®) = ICuam®I £ X 2 |IC,(t) — IC ()] £ X

lemma.2.ind: Lemma
B< roun AT(23 A+ 25 B%p, X + 2% ((rmaz + B xp+A) < X
A okaymaxsync(z, X)
5 okaymaxsync(i + 1, X)

lemma.2: Lemma 3 < Tmin
Ap SX/\1r(2*A.+2*ﬂ*p,X+2*((rma,+ﬂ)*p+A)) <X
> okaymaxsync(i, X)

induction: Axiom prop(0) A (V j:prop(j) D prop(j + 1)) D prop(i)
Proof

okaymaxsync_defn_lr_pr: Prove okaymaxsync_defn_lr from

okaymaxsync {p — p@CS, ¢ — q@CS}

okaymaxsync_defn_rl_pr: Prove
okaymaxsync.defnrl {p — p@P1S, ¢ — qg@P1S} from okaymaxsync

lemma_2_base_proof: Prove lemma_2_base from
t:?y*g 1—0, p— p@PA4S, q — q@P4S},
synctime_0 {p «— (p@P4S 1 ¢@P45) [0]},
lemma2.0 {p — p@P4S, ¢ — q@PA4S},
okaymaxsync.defn_rl {i — 0}
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okay Reading_shift2_proof: Prove okay_Reading_shift2 from
okay_Reading shift1, okaymaxsync_defnlr {p — p@P1S, ¢ — ¢@P15}

CfnIClockl_proof: Prove CfuIClockl from
IClock defn {p —g¢, t —t;*1, i —i+1},
Adj{p—q, i — i +1},
translation_invariance

{p—q,
v — O,
X — PC,(#) = PC, (1)),
rate.2 {p ¢, s — t;*1, t — it}
rho_1,
pos_product {z — t;*! — tf]“, y—1-p}

okay.Reading_plus_proof: Prove okay Reading_plus from
okay Reading_defn Ir {p, — p;@P2S, ¢; — ¢,@P2S},
okay_Reading_defn_rl {y — (A p; — time: y(p;) + X)}

lemma._2_ind1_proof: Prove lemma_2_ind1 from
precision_enhancement A ' .
{6 — (,\_p1 — time: ©4+!p;) + PCq(t;t1) = PC,(tit)),
v — @5-}-1
p )
X —2xA+2«8%p,
V= X+ 2% ((rmaz + 8) xp+ A)},
okay Readvars_shift {t — t;+1},
okay Reading shift2 {p; —p, s — ti*!},
okay Readingshift2 {p; — ¢, s — UARES
okay_Reading_plus
{r — 61,
t—ttt
X — PCy(t+!) — PC,y(ti+1),
Y — X+ 2% ((rmac +B8)*p+ A},
correct_closed {p — ¢, s —t;*!, t — it}

lemma2_abs_fact_proof: Prove lemma2_abs_fact from
Il {z —s—t:1}, [*1] {z — s —t2}, | x 1| {z — s — 1}
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lemma_2_ind3_proof: Prove lemma_2.ind3 from
lemma_2.indl1,
lemma2_abs_fact
{s — IC}F (t51),
t — IC (t5H),
ty — Cfn(Qv @'+1)
iy — cfn(g, (Ap1 — time: ©41p1) + B* (1 + p))),
X — X},
lemma. 2.1 {q — p},
Cfn IClockl

lemma_2_ind_step_proof: Prove lemma_2_ind_step from
(*1 f 2)[*3] , minsync, abs_com {z — IC,(t), y — IC‘( )}

lemma.2_ind_proof: Prove lemma.2.ind from

lemma_2.ind3 {p — (p@P2S 1t g@P2S)[i+1], ¢ — (p@P2S | ¢@P25)[i+1]},

okaymaxsync.defn_rl {i — i+ 1},
lemma_2_ind_step
{i—i+1,
p — p@P2S,
q— q@P2S
t— tp@P?S q@P2S}
43 o {i—i+1, p—p@P2S, ¢ — q@P25},
minsync_maxsync {i — i+ 1, p — p@P2S, ¢ — q@P25},

maxsync_correct
{s — t;,+q1,
1e—141,
p — p@P2S,
q — q@P2S},
minsync.correct
{s =5,
Pe—id ],
D — p@P2S,
¢ — q@P25}

lemma_2_proof: Prove lemma_2 from
readbounds.induction
{prop «— (A i — bool:
B rmin Ap< X

AT(2+A+2%B%xp, X +2%((rmaz +B) xp+A)) <X

O okaymaxsync(s, X))},
lemma_2_ind {i — j@P15},
lemma_2_base,
mu-0
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End readbounds
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lemma3: Module

Using readbounds, basics, clockassumptions, arith
Exporting all with readbounds

Theory

prop: Var function[nat — bool]

11 m,n, po, 9o, P» 4, P1, P2, 91, 2: Var process

1,7, k: Var event

z,y,z,71,8,t,11,t2, 21,2, 41, Y2 Var time

X,Y,Z,R,S,T,Ti, T2, X1, X2, Y1,Ys: Var Clocktime

~,6: Var function[process — Clocktime]

abs_IClock_diff: function[nat, Clocktime — bool]

IClock Reading: function[nat, time — function[process — Clocktimel]]
bs: time

maxmax.gap: Lemma
correct(p, s) A correct(g, )
i+1 i
A& 2 NS Stppien N2 Moot
Ds—~1< Pmazr

minmax gap: Lemma
correct(p, s) A correct(q, 5)
i+l i
NS 2EAS Sy M2 Uppo
Ds—1< rmas

drift_bnd: Lemmat < s ' .
A co.rrect(p,s)‘/\ correct(g, s) A [IC,(t) = IC, ()| <Y
DIC(s) = ICY(s)| S Y +2x(s =) %p
maxsync_max: Lemma t{,, v > & Atie 2 t
minsyncmin: Lemma tZPUq)[i] <t A ttpuq)[s'] <t
accuracy.preservation: Lemma
correct(p, tpt!)
A correct(g, t;t!)
AV m:
correct(l, t5+1) A correct(m, t;+!)
> [IC(E+Y) — ICH, (1) < X)
DICH () — IC (M) S a(X +2+A) + A
accuracy.pres_stepl: Lemma
s—ti] <yAlt—to| <yAlti—taf <z Ds=t|<2xy+ =z
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accuracy.pres_stepl: Lemma. _
correct(p, ) A correct(l, t5t1) A correct(m, tt1)
D |e;t) — O, m)|
<CHEG) = IC ()| + 2+ A

lemma3_l_1: Lemma
correct(p, t) A correct(q, )
A B < Tmin
Ap<X
AT2+A+2+B%p, X +2%((rmaz +B)xp+A)) < X

_ A2 t(pfrq)[-] '
D IC,(t) - IC: (OIS X+ 25—t 000p) *

lemma3_1: Lemma correct(p,?)
A correct(q,t)
AB < Tmin
Ap< X
/\1r(2*A+2*ﬂ*p,X+2*((rma,+ﬂ)*p+A)) <X

A2 toaon M <t
DIVC(t) = VC () K X +2%rmar*p

lemma3_2_0: Lemma
correct(p,t (p&q)[t+1])

A correct(q, t(pUq)[xH])
A B < Tmin
/\p<X/\7r( *A+2%B8xp, X +2%((Prmaz +B) *xp+ A< X

i+l
(puq)[l+1](t(puq)[-+l])

IC(PTM)["#—1](t(p1}q)[i+1])i
<a(X+2*x(rmaz+8)*p+2xA)+ A

S |IC

lemma3d2_1: Lemma
correct(p,t) A correct(q,t)
A B < Tmin
Ap< X
AT2%A+2xB8%xp, X+ 2% ((rmaz +B)xp+A)) < X
/\a(X+2*(rmaz+B)*p+2*A)+A+2*ﬁ*p< 6

1 i+1
A2 0o A < i)

D HCGugti+11(®) = IC{ppyisn (DI < 6
lemma3d 2 _step: Lemma
correct(p,t) A correct(q,t) A B < rpin At >t

41
ot< t(pl}q)['

At <t

(riq) (ptre)ld]
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lemma3_2_stepl: Lemma ‘
correct(p,t) A correct(q,t) A B < rmin At > tE;‘&q)['.H]

St tzpﬂq)IHl]

lemmad_2_step2: Lemma
correct(p, t) A correct(g,t)

) i+1 i+l
AB S rmin At 2ty M < Lppglit)

D HCHy i+ 1® = IClati+n @)
= [VCiuayi+11(t) — VC(iprapi+1 (D)

lemma3_2_step3: Lemma
VCiupti+1(t) = VCiai+1(t) = [VCp(t) — VCy ()]

lemma32: Lemma correct(p,t)
A correct(g,t)
AB L rmin
Ap<X
AT(2xA+2%B%xp, X +2%((rmac +B)*p+ A< X
Aa(X +2%(Tmar +B)xp+2%A)+A+2%Fxp <6
/\X+2fr,,,“*p§6.
At 2 tpppu Mt < tz:f:q)[iﬂl
S IVC (1) - VCo®)] < 6

okayClocks: function[process, process, nat — bool] =
(Ap,g,i:(Vt: .
t2 0Nt <t correct(p, t) A correct(q,t)
D [VCy(t) = VCy()] £ 6))

okayClocks_defn_Ir: Lemma
okayClocks(p, ¢, {) .
D(VEt2>0At< tonoil N correct(p, t) A correct(q, t)

DVC(t) = V(1) < 6)

okayClocks_defn_rl: Lemma
(Vt>0At < tEpﬂq)[i] A correct(p, t) A correct(q,t)

DIVC,(t) = VC,(t) < 8)
D okayClocks(p, ¢, ¢)

lemma3 3.0: Lemma pu < 6 D okayClocks(p, ¢,0)
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lemma33.ind: Lemma
B < rmin A < 85
AT2%A+2%B%p, b5+ 2% ((rmaz + B)xp+ A)) < 65
Abs+2%rmarxp<$é
ANa(bs+ 2% (Tmaz +B)*p+2+A)+A+2xB%xp< 6
A okayClocks(p, g, 7)
D okayClocks(p, ¢,i + 1)

lemma3.3: Lemma 8 < rmin

/\p565/\1r(2*A+2*ﬂ*p,65+2*((rmar+ﬁ)*p+A))565
A6S+2*7'ma.1:*psé

Aa(bs + 2% (rmaz +B)*kp+2+xA)+ A+ 2xB8%p<é
D okayClocks(p, g, i)

Proof
okayClocks_defn_Ir_pr: Prove okayClocks_defn Ir from okayClocks {t — t@CS}

okayClocks_defn_rl_pr: Prove okayClocks.defn.rl {t «— t@P1S} from okay-
Clocks

accuracy_pres_step2: Lemma
220An—z<yAp+z2yDdlr—yl<|z—wnl+z

accuracy-pres.step2_pr: Prove accuracy_pres_step2 from
%1 {z =z =}, |x 1| {z — 2 — 11
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accuracy-_preservation_pr: Prove
accuracy_preservation {l +— I@P2S, m — m@P2S} from
accuracy.preservation_ax
{ppred — (A g: correct(g, t;t1)),

y - O,

X — X +2xA},
okay Readpred

{Y — X +2*A,

ppred «— (A g: correct(g, tyt!)),

¥ — 6},
accuracy_pres_stepl {I — I@P2S, m — m@P25},
accuracy_pres_step2

{z — A,

Y1 < e:;+lq)1

Y — IC';(t:,“),

z — ICHI (1)},
ReadClock.bndl,
ReadClock.bnd?2,
correct_count {t — t;*1},
IClock_defn {i —i+1, t —t3*'},
Adj {i—i+1}

abs.diff 2: Lemma |z —y|<zDzx—-y<zAy—z<z
abs_diff 2_pr: Prove abs_diff 2 from | x 1} {z — z — y}

accuracy_pres.step0_pr: Prove accuracy_pres_step0 from

okay_Readvars_shift step2,
okay _Readvars_shift_step2

{t1 — 12,

ty — 1y,

s —1,

t - s},
abs_ diff 2 {z — t1, y — t2, z — z},
abs_com {z — s, y — t}
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accuracy_pres_stepl_pr: Prove accuracy_pres_stepl from
accuracy._pres_step(Q

{y—=4, o

z — |ICI(tF) ~ IC ()],
5 — @:,HI),

ty — IC}(t5+Y),

t — O, m),

ty — ICH, (15},
Readerror {q ~ {},
Readerror {¢ — m},
abs_com {z «— IC|(t;*!), y — @:,‘*'11)},
abs_com {z — ICjn(t;,+1), y — O;tim)}

lemma3_3_proof: Prove lemma3.3 from
lemma3_3.nd {i — j@P2S},
readbounds.induction
{prop « (A i — bool:
B rmin Ap<és
AT(2*A+2%B%p,bs+2%((rmez + B)*p+ A)) <és
Abs+2%rpaexp<é
ANa(bs + 2% (Pmar+ B) *xp+ 2% A)+ A+2xBxp<é
D okayClocks(p, ¢,))},
lemma3_ 3.0,
pos_product {z — rmaz, ¥ — p},
rmax.0,

rho_0

lemma3._3_ind_proof: Prove lemma3.3_ind from
lemma32 {t — t@QP3S, X ~ &5},
okayClocks_defndr {t — t@P3S},
okayClocks_defn_rl {i — i+ 1}

lemma3.3._0_proof: Prove lemma3.3.0 from
okayClocks_defnrl {i — 0},
synctime.0 {p — (p 1t ¢)[0]},
synctime_0,
synctime_0 {p — ¢},
VClock.defn {t — t@P1S, ¢ — 0},
VClock-defn {p — ¢, t — t@QP1S, i — 0},
lemma.2_0,
rtsl {t — t@P1S, i — 0},
rtsl {p — ¢, t — t@P1S, i — 0},
rmin_0
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lemma3_1_lproof: Prove lemma3_1_1 from
lemma._2,
okaymaxsync.defnir {p — p, ¢ — ¢},
t:?.*? ’ )
drift_bnd {s — 1, ¢ — tzpfrq)[l']’ Y — X, j—1i},
rho_ 0,
correct_closed {s «— ¢, t «— tEPM)["]}’
correct_closed {s — ¢, t — ?me)m’ p— q},
multleq {z — p, y — t — torai) T Tomaz }s
maxsync.max,
minsync_min {i — 7+ 1},
minmax.gap {s — 1, t — 1, }

lemma3.l_proof: Prove lemma3_l from
lemmad_1.1,
VClock_defn,
VClock_defn {p — ¢},
rts0,
multleq {z — p, y — ¢ — tépfrq)[:‘]’ T — Pmaz}
maxsync.max,
minsync.min {{ — i + 1},
rho 0
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lemma3_2.0_proof: Prove lemma3 2.0 from
lemma3l_1 {p — I@P2S, ¢ — m@P2S, t — té:ﬁq)[iﬂ]},
accuracy_preservation
{p—(pUgli+1],
g—(ptoli+1],
X — X + 2% (rmaz + B) xp},
lemmal2 {p — (p | ¢9)[i + 1], ¢ — ({QP2S  m@P2S)[i]},
mult leq
{.’t “~ Tmar + 8,
Y — Ui+ ~ Hiap2spmer2s)il
z — p},
lemmal.l {g — {(p | ¢)[i + 1], p — (IQP25 ft m@P2S)[d]},
rho 0,
minsync_correct {i —i+1, 5 — t;;{iq)[i-f-l]}’

: : t+1
maxsync_correct {1 i+ 1, 5 — t(puq)[-'+1]}’

maxsync_correct
{p — l@P25,
g — m@P2S,
- pte
S =g+
correct_closed
i+1
{s = toypis

t — tap2stmap2s)[i]’

p — (1@P2S § m@P2S)[i]}
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lemma3_2_1_proof: Prove lemma32_1 from
lemma32.0,
VClock.defn {p — (p Y4 ¢)[i + 1], i — i+ 1},
VClock_defn {p — (p ft ¢)[¢ + 11},
drift_bnd
{s ~1,
bty
g—(ptoli+1],
p—(p¥gli+1],
te—1+41,
j — i’
Y —a(X +2%(Pmaz + B) *p+2xA)+ A},
rho 0,
maxsync_correct {s «—t, i — i+ 1},
minsync_correct {s —t, i — i+ 1},
correct_closed
{p—(@trgli+1],
s +—1,
t— tyqp+n)
correct _closed

{fp—=@Igli+1],
s 1,
i1
t = toygu+n b ,
correct_closed {s — 1, t — tE:liq)[i +nb
correct_closed {p — ¢, s —1, t — t{;‘&q)['._‘_l]},
rtsl {i —i+1, p—(p{ q)[i1+ 11},
multleq {z —p, y— 1t — tE;qu)[iH]’ z — B},
rs2 {i—i+1, p—(prli+1], ¢ = (I PL+1]}

lemma3_2_proof: Prove lemma3.2 from
lemma3.2_1, lemma3_l, lemma3_2_step2, lemma3._2_step3

lemma3_2_step_proof: Prove lemma3_2_step from

rts2 {p — (p 1 li], ¢ — (p 4 OLil},

risl {p — (p 4 9)[i]},

minsync_correct {s «— t},

maxsync._correct {s — t},

minsync_min,

correct_closed {p « (p 4 9)[i], s — 1, t — t{,y 0y}
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lemma3_2_stepl_proof: Prove lemma3_2_stepl from
rts2 {p— ()i + 1], ¢ — (4 )i + 1]},

rtsl {p— (p 4 Q)i+ 1]},
minsync._correct {s «t, ¢ — i+ 1},
maxsync_correct {s —t, i —i+ 1}

lemma3_2_step2_proof: Prove lemma3_2_step2 from
lemma3 2.step {i — i+ 1},
lemma3_2_stepl,
VClock_defn {p — (p 4 )i +1], i — i+ 1},
VClock_defn {p — (p + @)[i + 1]},
minsync_correct {s — ¢, i —i+ 1},
maxsync.correct {s —t, i —i+ 1}

lemma3_2_step3_proof: Prove lemma3_2_step3d from
abs.com {z — VC,(t), y — VCy (1)},
minsync {p —p, ¢ —gq, i —i+1},
1t *2)[*3] {p —p, g g, i —i+1}

maxmax.gap-proof: Prove maxmax_gap from
(1t #2)[%3) {i — i+ 1}, (x1 ft %2)[%3] , rtsO {t — s}, rtsO {t — s, p « ¢}

minmax_gap.proof: Prove minmax gap from
minsync_maxsync {i — i+ 1}, maxmax_gap

drift_bnd_proof: Prove drift_bnd from
lemma_2_2a {i — j},
lemma2_2a {q — p},
lemma 2 2b {i « j},
lemma2_2b {q « p},
mult ldistrib.minus {z «— s -1, y — 1, z — p},
mult1distrib {z — s —t, y — 1, z « p},
abs_shift
{r — IC,(1),

5 — IC;(t),

tl — IC;,(S),

ty — IC‘;(S),

ye—(s—t)x1,
ze—(s—1t)xp,
z <Y}

maxsync.max._proof: Prove maxsync.max from (1 ff x2)[%3]

minsync_min_proof: Prove minsync_min from minsync
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End lemma3
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lemma final: Module

Using clockassumptions, lemma3, arith, basics
Exporting all with clockassumptions, lemma3
Theory

»,49,P1,P2,41,92,P3, 43, ilj! k: Var nat

{,m,n: Var int

z,y, z: Var number

posnumber: Type from number with (A z:z > 0)
r,s,t: Var posnumber

correct_synctime: Lemma correct(p,t) At < t;, + Pmin Dt < t;"'l
synctime_multiples: Lemma correct(p,t) At > 0At < i % min D t:, >1

synctime_multiples bnd: Lemma correct(p,t) At > 0Dt < t,,[,t/r"""]+1
agreement: Lemma £ < rmin
Ap<bsAT(2*A+2%Bxp,bs+2%((Tmaz +B)*p+A)) < s
Abs +2%rpar*p<é
ANa(bs+2*(rmaz+ B) *p+2%xA)+A+2xFxp <6
At > 0 A correct(p,t) A correct(q,t)
S VG (t) - VC(1)] < 8

Proof

agreement_proof: Prove agreement from
lemma33 {i — [t/rmin] + 1},
okayClocks_defnlr {i — [t/rmin] + 1, t — tQCS},
maxsync_correct {s —¢t, i — [t/rmin] + 1},
synctime_multiples.bnd {p < (p ft ¢)[[t/Tmin] + 1]},
rmin.0,
div_nonnegative {z — t, y — rmin},

ceil.defn {z — (t/rmin)}

synctime_multiples_bnd_proof: Prove synctime_multiples_bnd from
ceil_plus.mult div {z — t, ¥y — rmin},
synctime_multiples {¢ — [t/rmin] + 1},
rmin.0,
div_nonnegative {z — t, ¥ — Tmin},
ceil_defn {z «— (t/Pmin)}

correct_synctime_proof: Prove correct_synctime from rtsl {t — t@CS}
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synctime_multiples_pred: function[nat, nat, posnumber — bool] ==
(Xi,p,t:correct(p,t) At > 0AL < i*rmin Dty > 1)

synctimemultiplesstep: Lemma
correct{p,t) At > LAL20DE, > ixrmin

synctime_multiples_proof: Prove synctime_multiples from
synctime_multiples_step

synctime_multiples_step_prgd: function[nat,.nat, posnumber — bool] ==
(A, p,t:icorrect(p,t) Aty KtALt> 0D, > i%xrmin)

synctime_multiples_step_proof: Prove synctime_multiples_step from
readbounds.induction
{prop «— (A i: synctime_multiples_step_pred (7, p,t))},
mult 10 {z — rpin},
synctime_0,
rts_1 {i — j@P1},
rmin_0,
correct_closed {s — ¢, t — t}@P1+1},
distrib {z — jQPL, y — 1, z — rpmin},
multldident {z — ry;n}

End lemma final
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lemma final tcc: Module
Using lemma final

Exporting all with lemma final
Theory

p: Var naturalnumber
z: Var number

J: Var naturalnumber
t: Var posnumber

posnumber TCC1: Formula (3 z:z > 0)
synctime_multiples bnd_TCC1: Formula (correct(p,t) At > 0) D (rmin # 0)

synctime_multiples bnd_TCC2: Formula
(correct(p,t) At > 0) D ([t/rmin] +1 > 0)

agreement_proof TCC1: Formula (rmin # 0)
agreement_proof TCC2: Formula ([t/rmin] +1 2> 0)

Proof
posnumber TCC1_PROOF: Prove posnumber.TCC1
synctime_multiples bnd_ TCC1.PROOF: Prove synctime_multiples bnd TCC1
synctime_multiples bnd_ TCC2_PROOF: Prove synctime_multiples.bnd TCC2
agreement_proof TCC1_PROOF: Prove agreement_proof TCC1
agreement_proof TCC2_PROOF: Prove agreement_proof TCC2

End lemma final_tcc
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ica: Module

Using arith, countmod, clockassumptions, readbounds
Exporting all with clockassumptions
Theory

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number

17 m,n,p,q,pP1, P2, 91,92, P3, 43: Var process

t,7,k: Var event

z,y,2z,7,6,t: Var time

X,Y,Z,R,S,T: Var Clocktime

fun,v, #: Var function[process — Clocktime]

ppred, ppredl, ppred2: Var function[process — bool]

sigma.size: function[function[process — Clocktime], process — process] =
(A fun,i:q)

sigma: function[function[process — Clocktime}, process — Clocktime] =
(Afun,i:(if i > O then fun(i — 1) + sigma(fun,i — 1) else 0 end if))
by sigma size

fix: function[Clocktime, Clocktime, Clocktime —~ Clocktime] =
(AX,)Y,Z:(if|Y = Z| < X then Y else Z end if))

iconv: function[process, functionfprocess — Clocktime], Clocktime

— Clocktime] =

(A p,fun, Y:sigma(( A ¢: fix(Y, fun(q), fun(p))), N))

icalg: function[process, function[process — Clocktime], Clocktime

— Clocktime] = (A p,fun, Y:iconv(p, fun,Y)/N)

ica_translation_invariancel: Lemma
iconv(p, (A ¢:fun(q) + X),Y) = iconv(p,fun,Y) + N « X

ica_translation_invariance: Lemma
N >0 Dicalg(p, (A q:fun(q) + X),Y) = icalg(p, fun, V) + X

extensionality: Axiom (V{:ppred1(!) = ppred2(!)) D ppredl = ppred2

funl, fun2: Var function[process — time]

fun_extensionality: Axiom (V! funl(!) = fun2({)) D funl = fun?2
sigma_trans_inv: Lemma sigma(( A ¢;:fun(q1) + X),n) = sigma(fun,n) + n» X

Proof
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fix_trans: Lemma (A ¢:
fix(Y, ((A g1:fun(q1) + X)g), ((A q1: fun(a1) + X)p)))
= (A ¢:fix(Y, fun(g), fun(p)) + X)

fix_trans_pr: Prove fix_trans from
fun_extensionality
{funl «— (X ¢: fix(Y, (( A q1: fun(g:) + X)q), (( A q1: fun(q1) + X)p))),
fun2 — (A ¢: fix(Y, fun(g), fun(p)) + X)},
fix
{X «Y,
Y «— (( X ¢;:fun(q1) + X)J@P1S),
Z — ((Aqu:fun(q1) + X)p)},
fix {X «Y, Y « fun(I@P1S), Z — fun(p)}

sigma_trans_.inv_base: Lemma sigma(( A ¢;: fun(q:) + X), 0) = sigma(fun, 0)

sigma_trans_inv_base_pr: Prove sigma_trans_inv_base from
sigma {i — 0}, sigma {fun — (A q;:fun(q;) + X), i — 0}

sigma_trans_invind: Lemma
sigma(( A ¢1:fun(q:) + X), j) = sigma(fun, j) + j» X
Ssigma(( A qy:fun{g:) + X), 7 + 1) =sigma(fun,j + 1)+ (F+ 1) x X

sigma_trans_invind_pr: Prove sigma_trans_inv_ind from
sigma {fun — (A ¢q:fun(q;) + X), ¢ — j+ 1},
sigma {i — j + 1},
distrib {z — j, y— 1, z — X},
multlident {z — X}

sigma_trans_inv_pr: Prove sigma_trans_inv from
induction
{prop «— (A n:sigma(( A ¢1: fun(q:1) + X), n) = sigma(fun, n) + n x X),
i —n},
sigma_trans_inv_base,
sigma_trans_inv_ind {j — j@QP1},
multl10 {z — X}

ica_translation_invariancel _pr: Prove ica_translation.invariancel from
iconv,
iconv {fun «~ (A ¢:fun(g) + X)},
fix_trans,
sigma_trans_inv {fun — (A ¢: fix(Y, fun(q), fun(p))), n — N}
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ica_translation_invariance_pr: Prove ica_translation_invariance from
ica_translation_invariancel,
icalg,
icalg {fun «— (A ¢:fun(q) + X)},
div_distrib {z « iconv(p,fun,Y), y — Nx X, z — N},
div_cancel {z — N, y — X}

End ica
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ica2: Module

Using arith, countmod, clockassumptions, readbounds, ica
Exporting all with ica

Theory

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number

Iv m,n,p,q,P1, P2, 91, 92, P3, 93: Var process

1,7, k: Var event

z,y,2,7, 6,1t Var time

D X,Y,Z R,S,T: Var Clocktime

fun, funl, fun2, v, §: Var function[process — Clocktime]
ppred, ppredl, ppred2: Var function[process — bool]

sigma.split: Lemma
sigma(fun, i) = sigma(( X ¢: ( if ppred(g) then fun(q) else 0 end if)), 1)
+ sigma(( ) q: ( if —ppred(q) then fun(q) else 0 end if)), )

sigma_pos: Lemma okay_pairs(funl, fun2, X, ppred)
> sigma(( A ¢: ( if ppred(g) then (funl(q) — fun2(q)) else 0 end if)), i)
< count(ppred, 1) * X

okay pairs_fix: Lemma
Z > 0 A ppred(p)
A ppred(q)
A okay_pairs(funl, fun2, X, ppred)
A okay Readpred(funl, Z, ppred) A okay_Readpred(fun2, Z, ppred)
D okay_pairs(( A ¢;: fix(Y, funl(g), funl(p))),

(X q1: fix(Y, fun2(q:), fun2(q))),

(if Z <Y then X else X + Z end if),

ppred)

sigma diff: Lemma
sigma(funl, {) — sigma(fun2, i) = sigma(( A ¢: funl(gq) — fun2(q)), 7)
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sigmaneg: Lemma Y > 0 A funl(p) — fun2(q) < z
D sigma(( A q;:
( if —~ppred(g:)
then (fix(Y, funl(g, ), funl(p))—fix(Y, fun2(q:), fun2(q)))
else 0
end if)),
i) < count(( A q1: —ppred(q1)), i) x (2 +2*Y)

sigma.pos_neg: Lemma
Y >0AZ > 0Appred(p)
A ppred(q)
A okay_pairs(funl, fun2, X, ppred)
Aokay Readpred(funl, Z, ppred)Aokay Readpred(fun2, Z, ppred)
D sigma(( A q1: fix(Y, funl(g:), funl(p)) — fix(Y, fun2(g:), fun2(q))), 7)
< count(ppred, i) ( if Z <Y then X else X + Z end if)
+ count(( A g1: —ppred(q1)), i) * (X + Z +2xY)

iconv_sigma_diff: Lemma
Y >0AZ > 0Appred(p)
A ppred(q)
A okay_pairs(funl, fun2, X, ppred)
Aokay Readpred(funl, Z, ppred)Aokay _Readpred(fun2, Z, ppred)
D iconv(p, funl, Y) — iconv(g,fun2,Y’)
< count(ppred, N) *( if Z <Y then X else X + Z end if)
+ count(( A g1: —ppred(q1)), N)x (X + Z +2+Y)

okay Readpred_pairs: Lemma
ppred(p) A ppred(q)
A okay _pairs(funl, fun2, X, ppred) A okay Readpred(funl, Z, ppred)
D funl(p) — fun2(q) < X + 2

okay Readpred_lr: Lemma
ppred(p) A ppred(q) Aokay_Readpred(funl, Z, ppred) D |funl(p) — funl(q)| < Z

okay_pairs_ir: Lemma
ppred(p) A okay_pairs(funl, fun2, X, ppred) D |funl(p) — fun2(p)| < X

Proof

okay Readpred_pairs_pr: Prove okay Readpred_pairs from
okay_pairs {7y — funl, & — fun2, p3 — ¢},
abs_leq.0 {z — funl(g), v — fun2(q), z — X},
okay.Readpred {y « funl, Y — Z, | — p, m — ¢},
abs_leq.0 {z — funl(p), y — funl(q), z — Z}
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iconvsigma_diff_pr: Prove iconv_sigma_diff from
sigma_pos.neg {i — N},
sigma_diff
{funl — (A q;:fix(Y,funl(q,), funl(p))),

fun2 — (A q;:fix(Y, fun2(q, ), fun2(g))),

i — N},
iconv {fun «~ funl},
iconv {p — ¢, fun ~ fun2}

sigma_pos_neg_pr: Prove sigma_pos_neg from
sigma_pos
{funl — (A ¢;:fix(Y, funl(q, ), funl(p))),
fun2 — (A q1:fix(Y, fun2(g, ), fun2(q))),
X — (if Z <Y then X else X + Z end if)},
sigmaneg {z — X + Z},
okay_pairs._fix,
okay_Readpred_pairs,
sigma.split
{fun — (A ¢;:fix(Y,funl(q; ), funl(p)) — fix(Y, fun2(g ), fun2(q)))}

fix_diff1: Lemma Z > 0 A |funl(pz) — fun2(ps)| < X A |funl(ps) — funl(p)| < Z
D |fix(Y, funl(ps), funl(p)) — fun2(ps)|
<(if Z<Y then X else X + Z end if)

fix_diffl pr: Prove fix_diff] from
fix {X «Y, Y « funl(ps), Z — funl(p)},
abs_drift
{z1 ~ funl(p),
y — fun2(pg),
z — funl(pa),
z— X,
Z1 Z},
abs_com {z — funl(p), y « funl(ps)}

fix_diff2: Lemma [funl(ps) — fun2(ps)| < X A [fun2(ps) — fun2(q)| < Z
D |funl(ps) — fun2(q)| < X + Z

fix_diff2_pr: Prove fix_diff2 from
abs_drift
{z1 — funl(ps),
y «— fun2(q),
z — fun2(p3),
Z) — X,
z— 7}
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fix_diff3: Lemma |funl(q) — fun2(¢)} < X A |funl(p) — funl(q)| £ Z
O |funl(p) — fun2(g)| < X + 2

fix_diff3_pr: Prove fix_diff3 from
abs_drift
{z, «~ funl(p),
y — fun2(q),
z — funl(g),
2] &« Z,
z — X}

fix_diff: Lemma Z > 0
A |funl(ps) — fun2(p3)| < X
A {funl(g) — fun2(q)| < X
A |funl(ps) — funl(p)| < 2
A |fun2(p3) — fun2(g)| < Z A |funl(p) — funl(g)| < 2
> |fix(Y, funl(ps), funl(p)) — fix(Y, fun2(ps), fun2(q))|
< (if Z <Y then X else X + Z end if)

fix_diff_pr: Prove fix_diff from
fix {X « Y, Y « funl(ps), Z — funl(p)},
fix {X « Y, Y « fun2(ps), Z « fun2(q)},
fix_diff1,
fix_diff2,
fix_diff3

okay_pairsIr_pr: Prove okay._pairsIr from
okay_pairs {y « funl, 6 «— fun2, p3 — p}

okay_Readpred_lr_pr: Prove okay.Readpred_Ir from
okay _Readpred {y — funl, ¥ «— Z, l —p, m — q}

fix.diff_corr: Lemma
Z > 0 A ppred(p)
A ppred(gq)
A ppred(ps)
A okay_pairs(funl, fun2, X, ppred)
Aokay Readpred(funl, Z, ppred)Aokay Readpred(fun2, Z, ppred)
> |fix(Y, funl(pa), funl(p)) — fix(Y, fun2(ps), fun2(q))|
< (if Z <Y then X else X + Z end if)
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fix_diff_corr_pr: Prove fix_diff_corr from
fix_diff,
okay_pairsIr {p — p3},
okay_pairsIr {p « ¢},
okay Readpred.Ir {p — p3, ¢ — p},
okay_Readpred_Ir {funl — fun2, p — p3},
okay_Readpred_Ir

okay_pairs_fix_pr: Prove okay_pairs_fix from
okay _pairs
{7 — (X s Bix(Y, fun1(qy), fun1(p))),
g — (A q:: ﬁx(Y, funz(Ql): fun?(Q))):
X —(if Z<Y then X else X +Z end if)},
fix_diff_corr {p3 — p3@P1S}

sigmaneg_ind step: Lemma
Y > 0 Afunl(p) — fun2(q) < z
> fix(Y, funl(i), funl(p)) — fix(Y, fun2(i), fun2(q)) < z+2+Y

sigma.neg_ind step_pr: Prove sigma neg_ind_step from
fix {X —Y, Y —funl(i), Z « funl(p)},
fix {X — Y, Y « fun2(i), Z — fun2(q)},
absleq.0 {z « funl(i), y « funl(p), z — Y},
abs_com {z « fun2(i), y — fun2(q)},
absleq 0 {z «— fun2(q), y — fun2(i), z — Y}

sigma neg.ind: Lemma
Y > 0 Afunl(p) — fun2(q) < z
Asigma(( Agr:
( if —ppred(q:1)
then fix(Y,funl(g;), funl(p))
— fix(Y, fun2(¢q,), fun2(q))
else 0
end if)),
i) < count(( A q1: —ppred(q;)), i) * (2 +2xY)
D sigma(( A qq:
(if —~ppred(q1)
then fix(Y, funl(g;), funl(p))—fix(Y, fun2(q1), fun2(q))
else 0
end if)),
i+1)
< count(( A q1: —ppred(g1)),i+ 1) x(z +2#Y)
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sigmaneg_ind_pr: Prove sigma.neg_ind from
sigma
{fun — (A gqy:
( if —ppred(q;)
then fix(Y, funl(q:), funl(p)) — fix(Y, fun2(q;), fun2(q))
else 0
end if)),
ie—1+41},
count {ppred « (A q,: ~ppred(q;)), i — i+ 1},
sigma.neg.ind_step,
distrib
{z ~1,
y — count(( A q1: ~ppred(q,)), 1),
z2+—2z2+4+2xY},
mult lident {z — 2+ 2% Y}

sigma neg_pr: Prove sigma neg from
induction
{prop «~ (A1
Y > 0 Afunl(p) —- fun2(q) < z
D sigma(( A q;:
if ~ppred(q1)
then (fix(Y, funl(q;),funl(p))
— fix(Y, fun2(q,), fun2(q)))

else 0
end if),
i) < count(( A ¢1: —ppred(q;)), i) * (z + 2 Y))},
sigma
{fun — (A q;:
( if —ppred(q,)
then fix(Y, funl(g:), funl(p)) — fix(Y, fun2(q:), fun2(q))
else 0
end if)),
i — 0},

count {i — 0, ppred — (A g;: —ppred(q:))},
multl0 {z — 2+ 2+ Y},
sigmaneg.ind {i — j@QP1S}

sigma_difiind: Lemma
sigma(funl, i) ~ sigma(fun, i) = sigma(( A ¢: funl(q) — fun2(q)), 1)
D sigma(funl, i + 1) — sigma(fun2,i + 1)
= sigma(( A ¢: funl(q) — fun2(q)),i + 1)
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sigma._diffind_pr: Prove sigma_diff_ind from
sigma {fun « funl, i — ¢ + 1},
sigma {fun — fun2, i — i+ 1},
sigma {fun « (A ¢:funl(g) — fun2(q)), i —i+1}

sigma_diff_pr: Prove sigma_diff from
induction
{prop «— (A 1:
sigma(funl, ©) — sigma(fun2, i)
= sigma({ A ¢: funl(q) — fun2(yq)), ?))},

sigma {fun « funl, i — 0},

sigma {fun « fun2, ¢ — 0},

sigma {fun « (A ¢:funl(g) — fun2(q)), i — 0},
sigma diff ind {i — j@QP1S}

sigma_pos.ind: Lemma
okay _pairs(funl, fun2, X, ppred)
Asigma(( A ¢: ( if ppred(q) then (funl(g) — fun2(q)) else 0 end if)),q)
< count(ppred, i) * X
D sigma(( A ¢: ( if ppred(g) then (funl(g) — fun2(q)) else 0 end if)),
i+1)
< count(ppred, i+ 1)+ X

sigma_pos_ind_pr: Prove sigma_pos.ind from
sigma
{fun « (A ¢: ( if ppred(g) then (funl(g) — fun2(q)) else 0 end if)),
ie—i+1),
okay_pairs {7 « funl, # — fun2, p3 « i},
count {i — i+ 1},
distrib {z — 1, y « count(ppred, i), z — X},
multlident {z «— X},
absleq0 {z « funl(i), y « fun2(i), z — X}
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sigma_pos_pr: Prove sigma_pos from

induction

{prop — (A 1

okay_pairs(funl, fun2, X, ppred)
D sigma(( A ¢:
( if ppred(q) then (funl(g)—fun2(¢)) else 0 end if)),
i) < count(ppred, i) x* X)},

sigma

{fun — (X ¢: ( if ppred(q) then (funl(q) — fun2(q)) else 0 end if)),

i— 0},

count {i — 0},
multl10 {z — X},
sigma.pos.ind {i — j@P1S}

sigma.splitind: Lemma
sigma(fun, ) = sigma(( A ¢: ( if ppred(g) then fun(g) else 0 end if)), 1)
+ sigma(( A ¢: ( if ~ppred(g) then fun(q) else 0 end if)), )
D sigma(fun,i+ 1)
= sigma(( A ¢: ( if ppred(g) then fun(q) else 0 end if)),i + 1)
+ sigma(( A ¢: ( if —ppred(g) then fun(q) else 0 end if)),i+ 1)

sigma.split_ind_pr: Prove sigmasplit.ind from
sigma {{ — i+ 1},
sigma
{fun « (X ¢: ( if ppred(q) then fun(q) else 0 end if)),
i—i+1},
sigma
{fun «— (A ¢: ( if —ppred(q) then fun(q) else 0 end if)),
te—i+1}

sigma.split.pr: Prove sigma.split from
induction
{prop — (A ¢
sigma(fun, 7)
= sigma(( A ¢: ( if ppred(g) then fun(q) else 0 end if)), )
+ sigma(( A ¢: ( if ~ppred(q) then fun(q) else 0 end if)),))},
sigma {{ — 0},
sigma
{fun « (X g: ( if ppred(q) then fun(q) else 0 end if)),
i—0},
sigma
{fun « (A g: ( if —ppred(q) then fun(q) else 0 end if)),
i~ 0},

sigma.split_ind {i — j@P1S}
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End ica2
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ica3: Module

Using arith, countmod, clockassumptions, readbounds, ica, ica2
Exporting all with clockassumptions, ica2

Theory

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number

l) m,n,p,4q,p1, P2, 91,92, P3, 93: Var process

1,7, k: Var event

z,y,2,r,81: Var time

D, XY, Z R, S, T: Var Clocktime

fun, funl, fun2, v, 8: Var function[process — Clocktime]
ppred, ppredl, ppred2: Var function[process — bool]
A: Clocktime

Delta 0: Axiom A >0

mult.sum_neq: Lemma
m4+n=p+gAn<qgAZ<yYOmMm*xz+nxy<p*xr+g*y

count_complement: Lemma count(( A ¢: ~ppred(g)), n) = n — count(ppred, n)

prec_enh_step3: Lemma
count(ppred, N} > N — maxfaults A\ X > 0AY >0AZ >0
D count(ppred, N) x( if Z <Y then X else X + Z end if)
+ count(( A ¢1: —ppred(q1)), N)* (X + Z +2x*Y)
< N —maxfaultsx ( if Z <Y then X else X + Z end if)
+ maxfaults« (X + Z +2=+Y)

icalg_Pi: function[Clocktime, Clocktime — Clocktime] =
(AX,Z:(N — maxfaultsx ( if Z < A then X else X + Z end if)
+ maxfaults x (X + Z + 2 x A))

/N)

prec_enh_step: Lemma
ppred(p) A ppred(g) A okay_Readpred(funl, Z,ppred) D> Z > 0

prec-enh step2: Lemma ppred(p) A okay_pairs(funl, fun2, X, ppred) > X > 0
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icalg_precision_enhancement_step: Lemma
ppred(p) A ppred(q)

A count(ppred, N) > N — maxfaults

A okay pairs(funl, fun2, X, ppred)

A okay Readpred(funl, Z, ppred) A okay_Readpred(fun2, Z, ppred)
D icalg(p, funl, A) — icalg(q, fun2, A)
< (count(ppred, N) % ( if Z < A then X else X + Z end if)
+ count(( A q1: ~ppred(q1)), N) x (X + Z + 2% A))

/N

icalg.Mu: function[Clocktime, Clocktime, function|[process — bool]
— Clocktime] =
(A X, Z,ppred:
(count(ppred, N)x ( if Z < A then X else X + Z end if)
+ count(( A ¢1: ~ppred(q1)), N) (X + Z + 2 *x A))
/N)

icalg_precision_enhancement: Lemma
ppred(p) A ppred(q)
A count(ppred, N) > N — maxfaults
A okay pairs(funl, fun2, X, ppred)
A okay Readpred(funl, Z, ppred) A okay_Readpred(fun2, Z, ppred)
D icalg(p, funl, A) — icalg(q, fun2, A) < icalg Pi(X, 2)

Proof

prec_enh_step4: Lemma
N > 0 A ppred(p)
A ppred(q)
A count(ppred, N) > N — maxfaults
A okay_pairs(funl, fun2, X, ppred)
Aokay Readpred(funl, Z, ppred)Aokay Readpred(fun2, Z, ppred)
D icalg Mu(X, Z, ppred) < icalg_Pi(X, Z)
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prec_enh_step4_pr: Prove prec_enh_stepd from
prec_enh step,
prec_enh _step2,
prec_enh_step3 {Y — A},
Delta_0,
icalg_Pi,
icalg Mu,
div.ineq
{z — count(ppred, N) * ( if Z < A then X else X + Z end if)
+ count(( A q1: —ppred(q1)), N) » (X + Z + 2% A),
y — (N — maxfaults) x ( if Z < A then X else X + Z end if)
+ maxfaultsx (X + Z + 2% A),
z e~ N}

icalg_precision_enhancement_pr: Prove icalg_precision_enhancement from
prec_enh_step4, N_0, icalg_precision_enhancement_step, icalg.Mu

icalg_precision_enhancement _step_pr: Prove icalg precision_enhancement.step
from prec_enh_step,
prec_enh_step2,
iconv_sigma diff {Y — A},
N0,
icalg {fun « funl, Y — A},
icalg {p — ¢, fun — fun2, ¥ — A},
div_minus_distrib
{z — iconv(p,funl, A),
y « iconv(q, fun2, A),
z+— N},
Delta_0,
div_neq
{z «~ iconv(p,funl, A) — iconv(g, fun2, A),
y «— count(ppred, N) x ( if Z < A then X else X + Z end if)
+ count({ A q1: —ppred(q1)), N) (X + Z + 2% A),
z+~— N}

prec_enh _step3_pr: Prove prec_enh_stepd from
count_complement {n — N},
mult_ sum_ineq
{m « count(ppred, N),
n — count({ A ¢: =ppred(q)), N),
p «— N — maxfaults,
q — maxfaults,
z— (if Z<Y then X else X + Z end if),
y—X+2Z2+2*Y}
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prec_enh_step2_pr: Prove prec_enh_step2 from
okay_pairsr, | x 1| {x — funl(p) — fun2(p)}

count_complement pr: Prove count_complement from
induction
{prop «— (A n:count(( A ¢: ~ppred(g)), n) = n — count(ppred, n)),
i+—n},
count {ppred — (A ¢g: ~ppred(q)), i « 0},
count {: — 0},
count {ppred «— (A ¢g: ~ppred(q)), i — j@P1S +1},
count {¢ — j@P1S + 1}

mult_sum_ineq_pr: Prove mult sum_neq from
distrib {z — n, y — g —n, 2z —y},
distrib { — p, y — m —p, z — z},
multleq2 {z —g~n, 2 —y, y+— z}

prec_enh_step_pr: Prove prec_enh_step from
okay Readpred.Ir, | 1| {z — funl(p) — funl(q)}

End ica3
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ica4: Module

Using arith, countmod, clockassumptions, readbounds, ica, ica2,ica3
Exporting all with clockassumptions, ica3

Theory

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is number
[,m,n,p,q,p1,P2, 01,92, P3,¢3: Var process

1,j,k: Var event

z,y,2,7,8 1 Var time

D,X,Y,Z,R,S,T: Var Clocktime

fun, funl,fun?2, v,: Var function[process — Clocktime]
ppred, ppredl, ppred2: Var function[process — bool]

sigma_duplicate: Lemma sigma(( A i:z),i) =i*z

okay Readpred_fix_diff: Lemma

ppred(p) A ppred(q) A ppred(p,) A okay Readpred(fun, X, ppred)
D |fix(Y, fun(py), fun(p)) — fun(q)| < X

okay Readpred_fix_diff2: Lemma
ppred(p) A ppred(g) A okay_Readpred(fun, X,ppred) AY >0
D |fix(Y, fun(py), fun(p)) — fun(g)| < X +Y

acc_pres.sigma_pos: Lemma
ppred(p) A ppred(q) A okay_Readpred(fun, X, ppred)
D sigma(( A p1:

( if ppred(p1)
then [fix(Y, fun(p,), fun(p)) — fun(q)|
else 0
end if)),

N) < count(ppred, N) x X

acc_pres_sigma-neg: Lemma
ppred(p) A ppred(q) A okay_Readpred(fun, X,ppred) AY >0
O sigma(( A p1:
( if ~ppred(p1)
then [fix(Y, fun(p,), fun(p)) — fun(q)|
else 0

end if)),
N) < count(( A p1: —ppred(p1)), N)x (X +7Y)
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sigma_abs: Lemma |sigma(fun, )| < sigma(( A p: [fun(p)|), 1)

acc.pres.step: Lemma
ppred(p) A ppred(q) A okay_Readpred(fun, X, ppred)
D |iconv(p, fun, A) — N * fun(g)|
< count(ppred, N) * X + count({ A p: -ppred(p)), N) » (X + A)

icalg_accuracy_preservation: Lemma
ppred(p) A ppred(q)
A count(ppred, N) > N — maxfaults A okay_Readpred(fun, X, ppred)
D |icalg(p, fun, A) — fun(q)|
< ((N — maxfaults) * X + maxfaultsx (X + A))/N

Proof

icalg_accuracy_preservation_pr: Prove icalg.accuracy_preservation from
acc_pres_step,
N_O,
abs_div {z «~ iconv(p,fun, A) - N «fun(q), y — N},
icalg {Y — A},
div_cancel {z — N, y — fun(q)},
mult_sum_ineq
{m « count(ppred, N),
n — count(( A p: ~ppred(p)), N},
p — N — maxfaults,
q — maxfaults,
Tz~ X,
y—X+A},
Delta_0,
count_complement {n — N},
div_minus_distrib {z — N, z «— iconv(p, fun, A), y — N «fun(q)},
div_ineq
{z+~ N,
z « Jiconv(p, fun, A) — N * fun(q)|,
y — (N — maxfaults) + X + maxfaultsx (X + A)}
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acc_pres_step.pr: Prove acc_pres_step from
sigma split
{fun 4—}( A pi: fix(A, fun(py), fun(p)) — fun(q)|),
i+ N},
sigma._abs {fun «— (X py:fix(A, fun(p1), fun(p)) — fun(q)), i «~ N},
sigma_diff
{funl « (X p1:fix(A, fun(p,), fun(p))),
fun2 — (A py:fun(q)),
i— N},
acc_pres_sigmaneg {Y — A},
acc_pres_sigma.pos {Y «— A},
iconv {Y — A},
sigma_duplicate {z — fun(q), i — N},
Delta_0

sigma_abs_pr: Prove sigma_abs from
induction {prop «— (X i: |sigma(fun, i)| < sigma(( A p: |fun(p)|), )},
sigma {i — 0},
% 1] {z — 0},
sigma {i « 0, fun «— () p: [fun(p)])},
sigma {i «— j@P1S + 1},
sigma {i — j@P1S + 1, fun — (A p: [fun(p)])},
abs_plus {z « sigma(fun, jJ@P1S), y — fun(j@P1S)}

acc_pres_sigma.neg._pr: Prove acc_pres_sigma.neg from
sigma.pos
{i— N,
funl — (A py: |fix(Y, fun(p, ), fun(p)) — fun(q)|),
fun2 + (A p; — number: 0),
ppred « (A p1:—ppred(py)),
X —X+Y},
okay _pairs
{7y < (X p1: [fix(Y, fun(p1), fun(p)) — fun(q)}),
6 — (A p1 — number: 0),
X—X+4Y,
ppred — ( A p1: —~ppred(p1))},
okay _Readpred_fix_diff2 {p; — ps@P2S},
| % 1] {z — |fix(Y, fun(ps@P2S), fun(p)) — fun(q)|},
| x 1| {z — fix(Y, fun(p3@P2S), fun(p)) — fun(q)}
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acc_pres_sigma_pos_pr: Prove acc_pres_sigma.pos from
sigma._pos
{i — N,
funl « (A py: |fix(Y, fun(py), fun(p)) — fun(q)|),
fun2 < (A py — number: 0)},
okay_pairs
{7 < (A p1: |fix(Y, fun(pi), fun(p)) — fun(g)),
# — (A p1 — number: 0)},
okay_Readpred_fix_diff {p; — ps@P2S},
%1 {z — |fix(Y, fun(ps@P2S), fun(p)) — fun(q)[},
| % 1} {z « fix(Y, fun(ps@P2S), fun(p)) — fun(q)}

okay _Readpred_fix_diff2_pr: Prove okay Readpred_fix_diff2 from
okay_Readpred.Ir {funl «~ fun, Z — X},
fix {X —Y, Y « fun(p1), Z « fun(p)},
abs_drift
{z, «— fun(py),
y — fun(g),
z « fun(p),
z+— X,
Zy — Y}

okay Readpred_fix_diff_pr: Prove okay_Readpred_fix_diff from
okay Readpred_lr {funl « fun, Z — X},
okay_Readpred_Ir {funl « fun, p — p;, Z «— X},
fix {X Y, Y« fun(p,), Z «— fun(p)}

sigma_duplicate_pr: Prove sigma_duplicate from
induction {prop «— (A i:sigma((Ai:z),i) = ixzx)},
sigma {i — 0, fun — (A i:z)},
*lxx2 {z — 0, y — z},
sigma {i — j@QP1S, fun — (A i:z)},
sigma {i — j@P1S+ 1, fun — (Ai:2)},
distrib {z +~ j@P1S, y — 1, z — z},
xlx*x2 {z — 1, y + z}

End ica4
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ica_tcc: Module
Using ica

Exporting all with ica
Theory

t: Var naturalnumber
fun: Var function[naturalnumber — number]
j: Var naturalnumber
l: Var naturalnumber

gigma. TCCl: Formula (i >0) D (i — 1 > 0)
sigma TCC2: Formula (i > 0) D sigma.size(fun, 1) > sigmasize(fun,i — 1)
icalg TCC1: Formula (N # 0)
Proof
sigma TCC1_PROOF: Prove sigma . TCC1
sigma_TCC2_PROOF: Prove sigma TCC2
icalg_ TCC1_PROOF: Prove icalg. TCC1

End ica_tce
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icad_tcc: Module
Using ica4

Exporting all with ica4
Theory

p: Var naturalnumber

¢: Var naturalnumber

X: Var number

fun: Var function[naturalnumber — number]
ppred: Var function[naturalnumber — boolean]
pa: Var naturalnumber

J: Var naturalnumber

icalg_accuracy_preservation.TCCl: Formula

(ppred(p) A ppred(q)
Acount(ppred, N) > N —maxfaultsAokay Readpred(fun, X, ppred))

D(N £0)
icalg_accuracy_preservation_pr. TCC1: Formula (N — maxfaults > 0)

Proof

icalg_accuracy_preservation TCC1_PROOF: Prove
icalg_accuracy_preservation_TCC1

icalg-accuracy_preservation_pr_ TCC1_PROOF: Prove
icalg_accuracy_preservation_pr_TCCl

End icad_tec
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ica3_tcc: Module
Using ical3

Exporting all with ica3
Theory

p: Var naturalnumber

¢: Var naturalnumber

X: Var number

Z: Var number

funl: Var function[naturalnumber — number]
fun2: Var function[naturalnumber — number]
ppred: Var function[naturalnumber — boolean]
j: Var naturalnumber

icalg Pi. TCC1l: Formula (N # 0)

icalg_precision_enhancement_step_TCC1: Formula
(ppred(p) A ppred(q)
A count(ppred, N) > N — maxfaults
A okay_pairs(funl, fun2, X, ppred)
A okay Readpred(funl, Z, ppred)
A okay Readpred(fun2, Z, ppred))
O (N #£0)

prec_enh_step3_pr_TCC1: Formula (N — maxfaults > 0)
Proof
icalg Pi_TCC1.PROOF: Prove icalg P1. TCC1

icalg_precision_enhancement_step_ TCC1_PROOF: Prove
icalg_precision_enhancement_step. TCC1

prec_enh_step3_pr. TCC1_PROOF: Prove prec_enh_step3_pr_.TCC1
End ica3_tcc
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tce_proofs: Module

Using countmod_tcc, lemma.final_tcc, division, clockassumptions, ica_tcc,
icad_tcc,ica3. tce

Exporting all
with countmod_tce, lemma final_tcc, division, clockassumptions, ica_tcc,
icad_tcc,icad tee

Proof

countmod_TCC4_pr: Prove count_.TCC4 from
countsize, countsize {i — { if i > 0 then i — 1 else i end if)}

countmod TCC5_pr: Prove count_TCC5 from
countsize, countsize {i — ( if i > 0 then i — 1 else i end if)}

posnumber TCC1_PROOF: Prove posnumber. TCC1 {z — 0}

synctime_multiples bnd_TCC1_PROOF: Prove synctime_multiples_bnd_TCCI1 from
rmin_0

synctime_multiples bnd_TCC2_PROOF: Prove synctime_multiples_ bnd_TCC2 from
div_nonnegative {z «t, y «— rmin}, rmin0, ceil_defn {z — t/rmin}

agreement_proof TCC1_PROOF: Prove agreement_proof . TCC1 from rmin_0

agreement_proof TCC2_PROOF: Prove agreement_proof_ TCC2 from
div_nonnegative {z — ¢, y «— rmin}, rmin0, ceil.defn {z — t/rmin}

sigma_TCC2_PROOF: Prove sigma.TCC2 from
sigma _size, sigmasize {i — ( if ¢ > 0 then i — 1 else 0 end if)}

icalg TCC1 PROOF: Prove icalg_ TCC1 from N_0
icalg Pi.TCC1_PROOF: Prove icalg Pi. TCC1 from N_0

icalg_precision_enhancement_step_TCC1_PROOF: Prove
icalg_precision_enhancement_step. TCC1 from N_0

prec_enh_step3_pr_ TCC1_PROOF: Prove prec_enh_step3_pr_TCC1 from N_maxfaults

icalg_accuracy_preservation. TCC1_PROOF: Prove
icalg.accuracy_preservation. TCC1 from N_0

icalg_accuracy_preservation_pr. TCC1_PROOF: Prove
icalg_accuracy_preservation_pr.TCC1 from N_maxfaults

End tcc_proofs
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tcc_proofs_tcc: Module
Using tcc_proofs

Exporting all with tcc_proofs
Theory

t: Var lemma final. posnumber
i: Var naturalnumber

countmod TCC4.pr_.TCC1: Formula (( if i > 0 then i~ 1 else i end if) > 0)
synctime_multiples bnd_TCC2_PROOF._TCC1: Formula (rpyin # 0)

sigma TCC2_ PROOF_TCC1: Formula (( if ¢ > 0 then i — 1 else 0 end if) >
0)

Proof
countmod TCC4_pr.TCC1_PROOF: Prove countmod TCC4_pr.TCC1

synctime_multiples bnd_TCC2_PROOF_TCC1_PROOF: Prove
synctime_multiples bnd TCC2_ PROOF_TCC1

sigma TCC2_PROOF_TCC1_PROOF: Prove sigma TCC2_PROOF_TCC1

End tcc_proofs_tce
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top: Module

Using arith, lemma.final, ica4, tcc_proofs, tcc_proofs_tcc, division_tec
Theory

Proof

synctime_multiples bnd_TCC2_.PROOF_TCC1: Prove
synctime_multiples bnd_ TCC2_PROOF_TCCI from rmin.0

End top
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Appendix C

Proof Chain Analysis

The dependency analysis automatically establishes that there are no un-
proved statements in the proof that are not axioms or definitions.

C.1 Proof Chain for Agreement

Terse proof chain for proof agreement_proof in module lemma_final

Use of the formula
lemma_final.synctime_multiples_bnd

requires the following TCCs to be proven
lemma_final_tcc.posnumber_TCC1
lemma_final_tcc.synctime_multiples_bnd_TCC1
lemma_final_tcc.synctime_multiples_bnd_TCC2
lemma_final_tcc.agreement_proof TCC1
lemma_final_tcc.agreement_proof TCC2

Use of the formula
division.div_nonnegative

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
division_tcc.div_cancel _TCCi
division_tcc.ceil_mult_div_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq TCCi
divisjon_tcc.div_minus_1_TCC1



The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.Readerror
clockassumptions.VClock_defn
clockassumptions.accuracy_preservation_ax
clockassumptions.beta_0
clockassumptions.correct_closed
clockassumptions.correct_count
clockassumptions.init
clockassumptions.mu_0
clockassumptions.precision_enhancement_ax
clockassumptions.rate_1
clockassumptions.rate_2
clockassumptions.rho_0
clockassumptions.rho_1
clockassumptions.rmax_0
clockassumptions.rmin_0
clockassumptions.rts0
clockassumptions.rtsi
clockassumptions.rts2
clockassumptions.rts_2
clockassumptions.synctime_0
clockassumptions.translation_invariance
division.ceil_defn
division.mult_div_1
division.mult_div_2
division.mult_div_3
multiplication.mult_10
multiplication.mult_non_neg
readbounds.induction

Total: 29

The definitions and type-constraints are:
absmod. abs
basics.maxsync
basics.maxsynctime
basics.minsync
clockassumptions.Adj
clockassumptions.okay_Reading
clockassumptions.okay_Readpred
clockassumptions.okay_Readvars
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clockassumptions.okay_pairs

lemma3.okayClocks

multiplication.mult

readbounds .okaymaxsync
Total: 12

The formulae used are:
absmod.abs_bnd
absmod .abs_com
absmod.abs_diff_3
basics.ReadClock_bnd
basics.ReadClock_bndl
basics.ReadClock_bndil
basics.ReadClock_bndi2
basics.ReadClock_bnd2
basics.abs_shift
basics.lemma_1
basics.lemma_1_1
basics.lemma_1_2
basics.lemma_2_0
basics.lemma_2_1
basics.lemma_2_2a
basics.lemma_2_2b
basics.maxsync_correct
basics.minsync_correct
basics.minsync_maxsync
basics.okay_Reading_shiftil
basics.okay_Readvars_shift
basics.okay_Readvars_shiftil
basics.okay_Readvars_shiftil
basics.okay_Readvars_shifti2
basics.okay_Readvars_shift_step2
basics.okay_Readvars_shift_stepb
clockassumptions.okay_Reading_defn_ 1r
clockassumptions.okay_Reading defn_rl
clockassumptions.okay_Readpred_Reading
clockassumptions.okay_Readvars_detn_rl
clockassumptions.okay_pairs_Readvars
clockassumptions.precision_enhancement
clockassumptions.rts_0
clockassumptions.rts_1
division.ceil_mult_div
division.ceil_plus_mult_div
division.div_nonnegative
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division.mult_div
division_tcc.ceil_mult_div_TCC1
division_tcc.div_cancel _TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1
division_tcc.div_nonnegative_TCC1
divigion_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
lemma3.abs_diff_2
lemma3.accuracy_pres_step0O
lemma3.accuracy_pres_stepi
lemma3.accuracy_pres_step2
lemma3.accuracy_preservation
lemma3.drift_bnd

lemma3.lemma3_1

lemma3.lemma3_1_1

lemma3.lemma3_2

lemma3.lemma3_2_0

lemma3.lemma3_2_1
lemma3.lemma3_2_step
lemma3.lemma3_2_stepl
lemma3.lemma3_2_step2
lemma3.lemma3_2_step3
lemma3.lemma3_3

lemma3.lemma3_3_0
lemma3.lemma3_3_ind
lemma3.maxmax_gap
lemma3.maxsync_max
lemma3.minmax_gap
lemma3.minsync_min
lemma3.okayClocks_defn_1r
lemma3.okayClocks_defn_rl
lemma_final.synctime_multiples
lemma_final.synctime_multiples_bnd
lemma_final.synctime_multiples_step
lemma_final_tcc.agreement_proof_TCC1
lemma_final_tcc.agreement_proof_TCC2
lemma_final_tcc.posnumber_TCC1
lemma_final_tcc.synctime_multiples_bnd_TCCI
lemma_final_tcc.synctime_multiples_bnd_TCC2
multiplication.distrib
multiplication.distrib_minus
multiplication.mult_com
multiplication.mult_ldistrib
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multiplication.mult_ldistrib_minus
multiplication.mult_leq
multiplication.mult_lident
multiplication.mult_rident
multiplication.pos_product

readbounds.
readbounds.
readbounds.
.lemma_2_base

readbounds

readbounds.
readbounds.
.lemma_2_ind3

readbounds

readbounds.
readbounds.
readbounds.
readbounds.
readbounds.

Ctn_IClocki
lemma2_abs_fact
lemma_2

lemma_2_ind
lemma_2_ind1

lemma_2_ind_step
okay_Reading_plus
okay_Reading_shift2
okaymaxsync_defn_lr
okaymaxsync_defn_rl

Total: 98

The completed proofs are:
absmod .abs_bnd_proof
absmod.abs_com_proof
absmod.abs_diff _3_pr
basics.ReadClock_bndil_proof
basics.ReadClock_bndi2_proot
basics.ReadClock_bndil_proof
basics.ReadClock_bnd2_proof
basics.ReadClock_bnd_proot
basics.abs_shift_proot
basics.lemma_1_1_proof
basics.lemma_1_2_proof
basics.lemma_1_proof
basics.lemma_2_O_proof
basics.lemma_2_1_proot
basics.lemma_2_2a_proof
basics.lemma_2_2b_proof
basics.maxsync_correct_pr
basics.minsync_correct_pr
basics.minsync_maxsync_pr
basics.okay_Reading_shifti_proof
basics.okay_Readvars_shiftil_proot
basics.okay_Readvars_shift12_proof
basics.okay_Readvars_shiftl_proof
basics.okay_Readvars_shift_proof
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basics.okay_Readvars_shift_step2_proof
basics.okay_Readvars_shift_stepb_proof
clockassumptions.okay_Reading_defn_lr_pr
clockassumptions.okay_Reading_defn_rl_pr
clockassumptions.okay_Readpred_Reading_ pr
clockassumptions.okay_Readvars_defn_rl_pr
clockassumptions.okay_pairs_Readvars_pr
clockassumptions.precision_enhancement_pr
clockassumptions.rts_O_proof
clockassumptions.rts_1_proof
division.ceil_mult_div_proot
division.ceil_plus_mult_div_proof
division.div_nonnegative_pr
division.mult_div_pr
division_tcc.ceil_mult_div_TCC1i_PROOF
division_tcc.div_cancel _TCC1_PROOF
division_tcc.div_ineq_TCCi_PROOF
division_tcc.div_minus_1_TCC1_PROOF
division_tcc.div_nonnegative_TCCi_PROOF
division_tcc.mult_div_1_TCC1_PROOF
division_tcc.mult_div_TCC1_PROOF
lemma3.abs_diff_2_pr
lemma3.accuracy_pres_stepO_pr
lemma3.accuracy_pres_stepli_pr
lemma3.accuracy_pres_step2_pr
lemma3.accuracy_preservation_pr
lemma3.drift_bnd_proof
lemma3.lemma3_1_1proof
lemma3.lemma3_1_proof
lemma3.lemma3_2_0_proof
lemma3.lemma3_2_1_proof
lemma3.lemma3_2_proof
lemma3.lemma3_2_stepi_proof
lemma3.lemma3_2_step2_proof
lemma3.lemma3_2_step3_proof
lemma3.lemma3_2_step_proof
lemma3.lemma3_3_O_proof
lemma3.lemma3_3_ind_proof
lemma3.lemma3_3_proof
lemma3.maxmax_gap_proof
lemma3.maxsync_max_proof
lemma3.minmax_gap_proo?f
lemma3.minsync_min_proof
lemma3.okayClocks_defn_lr_pr
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lemma3.okayClocks_defn_rl_pr
lemma_final.agreement_proof
lemma_final.synctime_multiples_bnd_proot
lemma_final.synctime_multiples_proof
lemma_final.synctime_multiples_step_proot
multiplication.distrib_minus_pr
multiplication.distrib_proot
multiplication.mult_com_pr
multiplication.mult_ldistrib_minus_prooi
multiplication.mult_ldistrib_proof
multiplication.mult_leq_pr
multiplication.mult_lident_proof
multiplication.mult_rident_proof
multiplication.pos_product_pr

readbounds.
readbounds.
readbounds.
readbounds.
.lemma_2_ind3_proof
readbounds.
readbounds.
readbounds.
readbounds.
readbounds.
.okaymaxsync_defn_lr_pr
.okaymaxsync_defn_rl_pr
tcc_proots.
tcc_proots,
.posnumber_TCC1_PROOF

readbounds

readbounds
readbounds

tcc_proofs

tcc_proots.
tcc_prools.
Total: 99

Cfn_IClockl_proot
lemma2_abs_fact_proof
lemma_2_base_proof
lemma_2_ind1_proof

lemma_2_ind_proof
lemma_2_ind_step_proof
lemma_2_proof
okay_Reading_plus_proot
okay_Reading_shift2_proof

agreement_proof_TCC1_PROOF
agreement_proof_TCC2_PROOF

synctime_multiples_bnd_TCC1i_PROOF
synctime_multiples_bnd_TCC2_PROOF

C.2 Proof Chain for ICA Translation Invariance

Terse proof chain for proof ica_translation_invariance_pr in module ica

Use of the formula

ica.ica_translation_invariancel

requires the

following TCCs to be proven

ica_tcc.sigma_TCC1
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ica_tcc.sigma_TCC2
ica_tcc.icalg TCC1

Formula ica_tcc.sigma_TCC2 is a termination TCC for ica.sigma
Proof of

ica_tcc.sigma_TCC2
must not use

ica.sigma

Use of the formula
division.div_distrib

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
division_tcc.div_cancel_TCC1
division_tcc.ceil_mult_div_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.N_0O
division.mult_div_1
division.mult_div_2
division.mult_div_3
ica.fun_extensionality
multiplication.mult_10
readbounds.induction

Total: 7

The definitions and type-constraints are:
ica.fix
ica.icalg
ica.iconv
ica.sigma
ica.gigma_size
multiplication.mult
Total: 6

The formulae used are:
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division.div_cancel
division.div_distrib
division_tcc.ceil_mult_div_TCC1
division_tcc.div_cancel TCC1
division_tcc.div_ineq _TCC1
division_tcc.div_minus_1_TCC1
division_tcc.div_nonnegative TCC1
divigion_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCCi
ica.fix_trans
jca.ica_translation_invariancel
ica.sigma_trans_inv
ica.sigma_trans_inv_base
ica.sigma_trans_inv_ind
ica_tcc.icalg TCCH
ica_tcc.sigma_TCC1
ica_tcc.sigma _TCC2
multiplication.distrib
multiplication.mult_lident
multiplication.mult_rident
Total: 20

The completed proofs are:
division.div_cancel_pr
division.div_distrib_pr
division_tcc.ceil_mult_div_TCC1_PROOF
division_tcc.div_cancel_TCC1_PROOF
division_tcc.div_ineq_TCC1i_PROOF
division_tcc.div_minus_1_TCC1_PROOF
division_tcc.div_nonnegative _TCC1_PROOF
division_tcc.mult_div_1_TCC1_PROOF
division_tcc.mult_div_TCCi_PROOF
ica.fix_trans_pr
ica.ica_translation_invariancel_pr
ica.ica_translation_invariance_pr
ica.sigma_trans_inv_base_pr
ica.sigma_trans_inv_ind_pr
ica.sigma_trans_inv_pr
ica_tcc.sigma_TCC1_PROOF
multiplication.distrib_proot
multiplication.mult_lident_proof
multiplication.mult_rident_proof
tcc_proofs.icalg TCC1_PROOF
tcc_proofs.sigma TCC2_PROOF
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Total: 21

C.3 Proof Chain for ICA Precision Enhancement

Terse proof chain for proof icalg_precision_enhancement_pr in module ica3

Use of the formula
ica3.prec_enh_step4

requires the following TCCs to be proven
ica3_tcc.icalg _Pi_TCC1
ica3_tcc.icalg_precision_enhancement_step_TCC1
ica3_tcc.prec_enh_step3_pr_ TCC1

Use of the formula
countmod.count

requires the following TCCs to be proven
countmod_tcc.count_TCC1
countmod_tcc.count_TCC2
countmod_tcc.count_TCC3
countmod_tcc.count_TCC4
countmod_tcc.count_TCCE

Formula countmod_tcc.count_TCC4 is a termination TCC for countmod.count
Proof of

countmod_tcc.count_TCC4
must not use

countmod. count

Formula countmod_tcc.count_TCC5 is a termination TCC for countmod.count
Proof of

countmod_tcc.count_TCCS
must not use

countmod. count

Use of the formula
division.div_ineq

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
division_tcc.div_cancel _TCCi
division_tcc.ceil_mult_div_TCC1
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division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1

Use of the formula
ica.sigma
requires the following TCCs to be proven
ica_tcc.sigma_TCC1
ica_tcc.sigma_TCC2
ica_tcc.icalg_TCC1

Formula ica_tcc.sigma_TCC2 is a termination TCC for ica.sigma
Proot of

ica_tcc.sigma_TCC2
must not use

ica.sigma

==z=zzs=s====z=z======= SUMMARY ====z=====s==ssz==c
The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.N_O
clockassumptions.N_maxfaults
division.mult_div_1
division.mult_div_2
division.mult_div_3
ica3.Delta_0
multiplication.mult_10
multiplication.mult_non_neg
multiplication.mult_pos
readbounds.induction

Total: 10

The definitions and type-constraints are:
absmod.abs
clockassumptions.okay_Readpred
clockassumptions.okay_pairs
countmod. count
countmod.countsize
ica.fix
ica.icalg
ica.iconv
ica.sigma
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ica.sigma_size
ica3.icalg Mu
ica3.icalg_Pi
multiplication.mult

Total: 13

The formulae used are:

absmod.abs_1_bnd
absmod.abs_2_bnd

absmod.abs_3

_bnd

absmod.abs_com
absmod.abs_drift

absmod.abs_1

countmod_tcc.
countmod_tcc.
countmod_tcc.
countmod_tcc.
countmod_tcc.

division.div
division.div

division.div_minus_distrib

division.mnl
division.mul

division_tcc.ceil_mult_div_TCC1
division_tcc.div_cancel_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1

eq._0
count_TCC1
count_TCC2
count_TCC3
count_TCC4
count _TCCS
_distrib
_ineq

t_div
t_minus

ica2.fix_diff
ica2.fix_diff1
ica2.fix_dift2
ica2.fix_diff3
ica2.fix_diff_corr

ica2.iconv_s

igma_diff

ica2.okay_Readpred_lr

ica2.okay_Readpred_pairs

ica2.okay_pa
ica2.okay_pa
ica2.sigma_d
ica2.sigma_d

irs_fix
irs_lr
iff
iff_ind

ica2.sigma_neg

ica2.sigma_n

eg._ind
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ica2.sigma_neg_ind_step
ica2.sigma_pos
ica2.sigma_pos_ind
ica2.sigma_pos_neg
ica2.sigma_split
ica2.sigma_split_ind
ica3.count_complement
ica3.icalg_precision_enhancement_step
ica3.mult_sum_ineq
ica3.prec_enh_step
ica3.prec_enh_step2
ica3.prec_enh_step3
ica3.prec_enh_step4
ica3_tcc.icalg_Pi_TCC1
ica3_tcc.icalg_precision_enhancement_step_TCC1
ica3_tcc.prec_enh_step3_pr_TCC1
ica_tcc.icalg TCC1
ica_tcc.sigma_TCC1
ica_tcc.sigma _TCC2
multiplication.distrib
multiplication.distrib_minus
multiplication.mult_com
multiplication.mult_gt
multiplication.mult_ldistrib_minus
multiplication.mult_leq_2
multiplication.mult_lident
multiplication.mult_rident

Total: 64

The completed proofs are:
absmod.abs_1_bnd_proof
absmod.abs_2_bnd_proof
absmod.abs_3_bnd_proof
absmod.abs_com_proot
absmod.abs_drift_proof
absmod.abs_leq_O_proot
countmod_tcc.count_TCC1i_PROOF
countmod_tcc.count_TCC2_PROOF
countmod_tcc.count_TCC3_PROOF
division.div_distrib_pr
division.div_ineq_pr
division.div_minus_distrib_pr
division.mult_div_pr
division.mult_minus_pr
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division_tcc.ceil_mult_div_TCC1_PROOF
division_tcc.div_cancel _TCC1i_PROOF
division_tcc.div_ineq_TCC1_PROOF
division_tcc.div_minus_1_TCCi_PROOF
division_tcc.div_nonnegative TCCi_PROOF
division_tcc.mult_div_1_TCCi_PROOF
division_tcc.mult_div_TCC1_PROOF
ica2.fix_diffi_pr

ica2.fix_diff2_pr

ica2.fix_d4iff3_pr
ica2.fix_diff_corr_pr
ica2.fix_diff_pr
ica2.iconv_sigma_diff_pr
ica2.okay_Readpred_lr_pr
ica2.okay_Readpred_pairs_pr
ica2.okay_pairs_fix_pr
ica2.okay_pairs_lr_pr
ica2.sigma_diff_ind_pr
ica2.sigma_diff_pr
ica2.sigma_neg_ind_pr
ica2.sigma_neg_ind_step_pr
ica2.sigma_neg_pr
ica2.sigma_pos_ind_pr
ica2.sigma_pos_neg_pr
ica2.sigma_pos_pr
ica2.sigma_split_ind_pr
ica2.sigma_split_pr
ica3.count_complement_pr
ica3.icalg_precision_enhancement_pr
ica3.icalg_precision_enhancement_step_pr
ica3.mult_sum_ineq_pr
ica3.prec_enh_step2_pr
ica3.prec_enh_step3_pr
ica3.prec_enh_stepd_pr
ica3.prec_enh_step_pr
ica_tcc.sigma_TCC1_PROOF
multiplication.distrib_minus_pr
multiplication.distrib_proot
multiplication.mult_com_pr
multiplication.mult_gt_pr
multiplication.mult_ldistrib_minus_proof
multiplication.mult_leq_2_pr
multiplication.mult_lident_proof
multiplication.mult_rident_proof
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tcc_proofs.countmod_TCC4_pr
tce_proofs.countmod _TCC5_pr
tcc_proofs.icalg Pi_TCC1_PROOF
tcc_proofs.icalg TCC1_PROOF
tcc_proofs.icalg_precision_enhancement_step_TCC1_PROOF
tcc_proofs.prec_enh_step3_pr_TCC1i_PROOF
tcc_proofs.sigma_TCC2_PROOF

Total: 65

C.4 Proof Chain for ICA Accuracy Preservation

Terse proof chain for proof icalg_accuracy_preservation_pr in module ica4d

Use of the formula
ica4.acc_pres_step

requires the following TCCs to be proven
ica4_tcc.icalg_accuracy_preservation TCC1
ica4_tcc.icalg_accuracy_preservation_pr_TCC1

Use of the formula
ica.sigma
requires the following TCCs to be proven
ica_tcc.sigma_TCC1
ica_tcc.sigma _TCC2
ica_tcc.icalg_TCC1

Formula ica_tcc¢.sigma_TCC2 is a termination TCC for ica.sigma
Proof of

ica_tcc.sigma _TCC2
must not use

ica.sigma

Use of the formula
countmod. count

requires the following TCCs to be proven
countmod_tcc.count_TCC1
countmod_tcc.count_TCC2
countmod_tcc.count_TCC3
countmod_tcc.count_TCC4
countmod_tcc.count_TCC5E
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Formula countmod_tcc.count_TCC4 is a termination TCC for countmod.count
Prootf of

countmod_tcc.count_TCC4
must not use

countmod. count

Formula countmod_tcc.count_TCC5 is a termination TCC for countmod.count
Proof of

countmod_tcc.count_TCCS
must not use

countmod. count

Use of the formula
ica3.Delta_0

requires the following TCCs to be proven
ica3_tcc.icalg Pi_TCC1
ica3_tcc.icalg_precision_enhancement_step _TCC1
ica3_tcc.prec_enh_step3_pr_TCC1

Use of the formula
division.abs_div

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
division_tcc.div_cancel_TCCi1
division_tcc.ceil_mult_div_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.N_0O
clockassumptions.N_maxfaults
division.mult_div_1
division.mult_div_2
division.mult_div_3
ica3.Delta_0
multiplication.mult_10
multiplication.mult_non_neg
multiplication.mult_pos
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readbounds. induction

Total: 10

The definitions and type-constraint

absmod.abs

clockassumptions.okay_Readpred
clockassumptions.okay_pairs

countmod.count
countmod.countsize

ica.fix
ica.icalg
ica.iconv
ica.sigma
ica.sigma_siz

multiplication.mult

Total: 11

The formulae used are:
absmod.abs_1_bnd

absmod.abs_2_
absmod.abs_3_

bnd
bnd

absmod.abs_drift
absmod.abs_leq_0
absmod.abs_plus

countmod_tcc.
countmod_tcc.
countmod_tcc.
countmod_tcc.
countmod_tcc.

division.abs_
division.div_
division.div_
division.div_
division.div_
division.div_minus_distrib
division.div_nonnegative

count_TCC1
count _TCC2
count _TCC3
count_TCC4
count_TCCH
div

cancel
distrib
ineq
minus_1

division.mult_div
division.mult_minus

division_tcc.
division_tcc.
division_tcc.
division_tcc.
division_tcc.
division_tcc.

ceil _mult_div_TCC1
div_cancel _TCC1
div_ineq_TCC1
div_minus_1_TCC1

8

div_nonnegative_TCC1

mult_div_1_TCC1
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division_tcc.mult_div_TCCi
ica2.okay_Readpred_lr
ica2.sigma_diff
ica2.sigma_diff_ind
ica2.sigma_pos
ica2.sigma_pos_ind
ica2.sigma_split
ica2.sigma_split_ind
ica3.count_complement
ica3.mult_sum_ineq
ica3_tcc.icalg Pi_TCC1
ica3_tcc.icalg_precision_enhancement_step_TCC1
ica3_tcc.prec_enh_step3_pr_TCC1
ica4.acc_pres_sigma_neg
ica4.acc_pres_sigma_pos
icad4.acc_pres_step
ica4.okay_Readpred_fix_diff
ica4.okay_Readpred_fix_diff2
ica4.sigma_abs
ica4.sigma_duplicate
ica4_tcc.icalg_accuracy_preservation_TCCi
ica4_tcc.icalg_accuracy_preservation_pr_TCCi
ica_tcc.icalg _TCC1
ica_tcc.sigma_TCC1
ica_tcc.sigma_TCC2
multiplication.distrib
multiplication.distrib_minus
multiplication.mult_com
multiplication.mult_gt
multiplication.mult_ldistrib_minus
multiplication.mult_leq_2
multiplication.mult_lident
multiplication.mult_rident
multiplication.pos_product

Total: 60

The completed proofs are:
absmod.abs_1i_bnd_proof
absmod.abs_2_bnd_proot
absmod.abs_3_bnd_proof
absmod.abs_drift_proof
absmod.abs_leq_0O_proof
absmod.abs_plus_pr
countmod_tcc.count_TCC1_PROOF
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countmod_tcc.count_TCC2_PROOF
countmod_tcc.count_TCC3_PROOF
division.abs_div_pr
division.div_cancel_pr
division.div_distrib_pr
division.div_ineq_pr
division.div_minus_1_pr
division.div_minus_distrib_pr
division.div_nonnegative_pr
division.mult_div_pr
division.mult_minus_pr
division_tcc.ceil_mult_div_TCC1i_PROOF
division_tcc.div_cancel TCC1_PRCOF
division_tcc.div_ineq_TCC1_PROOF
division_tcc.div_minus_1_TCC1_PROOF
division_tcc.div_nonnegative TCC1_PROOF
division_tcc.mult_div_1_TCCi_PROOF
division_tcc.mult_div_TCCi_PROOF

ica2.
ica2.
ica2.

ica?2
ica2

ica2

ica3

okay_Readpred_lr_pr
sigma_diff_ind_pr
sigma_diff_pr

.sigma_pos_ind_pr
.sigma_pos_pr

ica2.
.sigma_split_pr
ica3.
.mult_sum_ineq_pr
ica4.
ica4.
ica4.
ica4.
ica4.
icad.
icad.
icad.

sigma_split_ind_pr
count_complement_pr

acc_pres_sigma_neg_pr
acc_pres_sigma_pos_pr
acc_pres_step_pr
icalg_accuracy_preservation_pr
okay_Readpred_fix_diff2 pr
okay_Readpred_fix_diff_pr
sigma_abs_pr
sigma_duplicate_pr

ica_tcc.sigma_TCC1_PROOF
multiplication.distrib_minus_pr
multiplication.distrib_proof
multiplication.mult_com_pr
multiplication.mult_gt_pr
multiplication.mult_ldistrib_minus_proof
multiplication.mult_leq_2_pr
multiplication.mult_lident_proof
multiplication.mult_rident_proof
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multiplication.pos_product_pr
tcec_proofs.countmod_TCC4_pr
tcc_proofs.countmod_TCCE_pr
tcc_proofs.icalg Pi_TCCi_PROOF
tcc_proofs.icalg TCC1_PROOF
tcc_proofs.icalg accuracy_preservation_TCC1i_PROOF
tcc_proofs.icalg_accuracy_preservation_pr_TCC1_PROOF
tcc_proofs.icalg _precision_enhancement_step_TCC1_PROOF
tcc_proofs.prec_enh_step3_pr_TCC1_PROOF
tcc_proofs.sigma_TCC2_PROOF

Total: 61
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